• Title/Summary/Keyword: 원격측정정보

Search Result 490, Processing Time 0.029 seconds

DEVELOPMENT OF THE THERMAL MODEL FOR KITSAT-1/2 MICROSATELLITES AND ITS VERIFICATION USING IN-ORBIT TELEMETRIES (우리별 1, 2호의 열제어 모델 개발 및 궤도 운용 결과를 바탕으로 한 모델의 검증)

  • 박성동;배정석;성단근;최순달
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.105-116
    • /
    • 1996
  • This study is based upon the thermal modeling, analysis and operational results of KITSAT-1 and KITSAT-2 microsatellites launched on August 11, 1992 and Septermber 26, 1993, respectively. As KITSAT-1/2 was designed to be launched as an auxiliary payload of ARIANE launcher, the constraints on volume, power consumption, and mass were required to adopt passive thermal control method controlling absorptivity, emissivity, and conductivities among adjacent modules. The main of KITSAT was to take Earth images using CCD cameras positioned at the bottom of spacecraft, in which the cameras were always pointing to the center of Earth. This study is concerned with orbital analysis, thermal modeling, simulation results, and its verification by utilizing in-orbit telemetry data of KITSAT-2. The results of telemetry analysis show that the thermal modeling is matched to actual temperature data within 10 degrees of error range in average.

  • PDF

An Study on Effective Maintenance and Operation System of Fiber Optic Lines (효과적인 광선로 유지 보수를 위한 시스템 개발에 관한 연구)

  • Jang, Eun-Sang;Park, Kap-Seok;Kim, Seong-Il;Choi, Sin-Ho;Lee, Byeong-Wook
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.54-57
    • /
    • 1998
  • As the physical layer on telecommunication network is replaced fiber optic lines, it is increased the need of systematic maintenance for fiber optic lines. Korea Telecom has developed FLOMS in order to establish maintenance processes for optical fiber lines. FLOMS has functions which manages optical facilities and tests optical fiber lines automatically. As a resuls, this system can check and/or report a fault. Operator, who is reponsible for management of optical fiber lines, can test the characteristics of optical fiber lines remotely using FLOMS. As interpoerable with Digital Transmission Management System, FLOMS provides efficient management for optical fiber lines. This system improves the work process to find fault location fast, detect the degradation of fiber quality, and make database of optical facilities efficiently.

  • PDF

Error Analysis of Waterline-based DEM in Tidal Flats and Probabilistic Flood Vulnerability Assessment using Geostatistical Simulation (지구통계학적 시뮬레이션을 이용한 수륙경계선 기반 간석지 DEM의 오차 분석 및 확률론적 침수 취약성 추정)

  • KIM, Yeseul;PARK, No-Wook;JANG, Dong-Ho;YOO, Hee Young
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.85-99
    • /
    • 2013
  • The objective of this paper is to analyze the spatial distribution of errors in the DEM generated using waterlines from multi-temporal remote sensing data and to assess flood vulnerability. Unlike conventional research in which only global statistics of errors have been generated, this paper tries to quantitatively analyze the spatial distribution of errors from a probabilistic viewpoint using geostatistical simulation. The initial DEM in Baramarae tidal flats was generated by corrected tidal level values and waterlines extracted from multi-temporal Landsat data in 2010s. When compared with the ground measurement height data, overall the waterline-based DEM underestimated the actual heights and local variations of the errors were observed. By applying sequential Gaussian simulation based on spatial autocorrelation of DEM errors, multiple alternative error distributions were generated. After correcting errors in the initial DEM with simulated error distributions, probabilities for flood vulnerability were estimated under the sea level rise scenarios of IPCC SERS. The error analysis methodology based on geostatistical simulation could model both uncertainties of the error assessment and error propagation problems in a probabilistic framework. Therefore, it is expected that the error analysis methodology applied in this paper will be effectively used for the probabilistic assessment of errors included in various thematic maps as well as the error assessment of waterline-based DEMs in tidal flats.

Monitoring of a Time-series of Land Subsidence in Mexico City Using Space-based Synthetic Aperture Radar Observations (인공위성 영상레이더를 이용한 멕시코시티 시계열 지반침하 관측)

  • Ju, Jeongheon;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1657-1667
    • /
    • 2021
  • Anthropogenic activities and natural processes have been causes of land subsidence which is sudden sinking or gradual settlement of the earth's solid surface. Mexico City, the capital of Mexico, is one of the most severe land subsidence areas which are resulted from excessive groundwater extraction. Because groundwater is the primary water resource occupies almost 70% of total water usage in the city. Traditional terrestrial observations like the Global Navigation Satellite System (GNSS) or leveling survey have been preferred to measure land subsidence accurately. Although the GNSS observations have highly accurate information of the surfaces' displacement with a very high temporal resolution, it has often been limited due to its sparse spatial resolution and highly time-consuming and high cost. However, space-based synthetic aperture radar (SAR) interferometry has been widely used as a powerful tool to monitor surfaces' displacement with high spatial resolution and high accuracy from mm to cm-scale, regardless of day-or-night and weather conditions. In this paper, advanced interferometric approaches have been applied to get a time-series of land subsidence of Mexico City using four-year-long twenty ALOS PALSAR L-band observations acquired from Feb-11, 2007 to Feb-22, 2011. We utilized persistent scatterer interferometry (PSI) and small baseline subset (SBAS) techniques to suppress atmospheric artifacts and topography errors. The results show that the maximum subsidence rates of the PSI and SBAS method were -29.5 cm/year and -27.0 cm/year, respectively. In addition, we discuss the different subsidence rates where the study area is discriminated into three districts according to distinctive geotechnical characteristics. The significant subsidence rate occurred in the lacustrine sediments with higher compressibility than harder bedrock.

Study of Prediction Model Improvement for Apple Soluble Solids Content Using a Ground-based Hyperspectral Scanner (지상용 초분광 스캐너를 활용한 사과의 당도예측 모델의 성능향상을 위한 연구)

  • Song, Ahram;Jeon, Woohyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.559-570
    • /
    • 2017
  • A partial least squares regression (PLSR) model was developed to map the internal soluble solids content (SSC) of apples using a ground-based hyperspectral scanner that could simultaneously acquire outdoor data and capture images of large quantities of apples. We evaluated the applicability of various preprocessing techniques to construct an optimal prediction model and calculated the optimal band through a variable importance in projection (VIP)score. From the 515 bands of hyperspectral images extracted at wavelengths of 360-1019 nm, 70 reflectance spectra of apples were extracted, and the SSC ($^{\circ}Brix$) was measured using a digital photometer. The optimal prediction model wasselected considering the root-mean-square error of cross-validation (RMSECV), root-mean-square error of prediction (RMSEP) and coefficient of determination of prediction $r_p^2$. As a result, multiplicative scatter correction (MSC)-based preprocessing methods were better than others. For example, when a combination of MSC and standard normal variate (SNV) was used, RMSECV and RMSEP were the lowest at 0.8551 and 0.8561 and $r_c^2$ and $r_p^2$ were the highest at 0.8533 and 0.6546; wavelength ranges of 360-380, 546-690, 760, 915, 931-939, 942, 953, 971, 978, 981, 988, and 992-1019 nm were most influential for SSC determination. The PLSR model with the spectral value of the corresponding region confirmed that the RMSEP decreased to 0.6841 and $r_p^2$ increased to 0.7795 as compared to the values of the entire wavelength band. In this study, we confirmed the feasibility of using a hyperspectral scanner image obtained from outdoors for the SSC measurement of apples. These results indicate that the application of field data and sensors could possibly expand in the future.

DEM Generation over Coastal Area using ALOS PALSAR Data - Focus on Coherence and Height Ambiguity - (ALOS PALSAR 자료를 이용한 연안지역의 DEM 생성 - 긴밀도와 고도 민감도 분석을 중심으로 -)

  • Choi, Jung-Hyun;Lee, Chang-Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.559-566
    • /
    • 2007
  • The generation of precise digital elevation model (DEM) is very important in coastal area where time series are especially required. Although a LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise DEM has been made using radar interferometry and waterline methods. One of these methods, spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. We attempted to construct DEM using ALOS PALSAR pairs - One pair is 2007/05/22 and 2007/08/22, another pair is 2007/08/22 and 2007/10/22 with respective perpendicular baseline of 820 m, 312m and respective height sensitivity of 75 m and 185m at southern of Ganghwa tidal flat, Siwha- and Hwaong-lake over west coastal of Korea peninsula. Ganghwa tidal flat has low coherence between 0.3 and 0.5 of 2007/05/22 and 2007/08/22 pair. However, Siwha-lake and Hwaong-lake areas have a higher coherence value (From 0.7 and 0.9) than Ganghwa tidal area. The reason of difference coherence value is tidal condition between tidal flat area (Ganghwa) and reclaimed zone (Siwha-lake and Hwaong-lake). Therefore, DEM was constructed by ALOS PALSAR pair over Siwha-lake and Hwaong-lake. If the temporal baseline is enough short to maintain the coherent phases and height sensitivity is enough small, we will be able to successfully construct a precise DEM over coastal area. From now on, more ALOS PALSAR data will be needed to construct precise DEM of West Coast of Korea peninsular.

An Efficient Addressing Scheme Using (x, y) Coordinates in Environments of Smart Grid (스마트 그리드 환경에서 (x, y) 좌표값을 이용한 효율적인 주소 할당 방법)

  • Cho, Yang-Hyun;Lim, Song-Bin;Kim, Gyung-Mok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2012
  • Smart Grid is the next-generation intelligent power grid that maximizes energy efficiency with the convergence of IT technologies and the existing power grid. Smart Grid is created solution for standardization and interoperability. Smart Grid industry enables consumers to check power rates in real time for active power consumption. It also enables suppliers to measure their expected power generation load, which stabilizes the operation of the power system. Smart industy was ecolved actively cause Wireless communication is being considered for AMI system and wireless communication using ZigBee sensor has been applied in various industly. In this paper, we proposed efficient addressing scheme for improving the performance of the routing algorithm using ZigBee in Smart Grid environment. A distributed address allocation scheme used an existing algorithm has wasted address space. Therefore proposing x, y coordinate axes from divide address space of 16 bit to solve this problem. Each node was reduced not only bitwise but also multi hop using the coordinate axes while routing than Cskip algorithm. I compared the performance between the standard and the proposed mechanism through the numerical analysis. Simulation verify performance about decrease averaging multi hop count that compare proposing algorithm and another. The numerical analysis results show that proposed algorithm reduce multi hop than ZigBee distributed address assignment and another.

The change of land cover classification accuracies according to spatial resolution in case of Sunchon bay coastal wetland (위성영상 해상도에 따른 순천만 해안습지의 분류 정확도 변화)

  • Ku, Cha-Yong;Hwang, Chul-Sue
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.1
    • /
    • pp.35-50
    • /
    • 2001
  • Since remotely sensed images of coastal wetlands are very sensitive to spatial resolution, it is very important to select an optimum resolution for particular geographic phenomena needed to be represented. Scale is one of the most important factors in spatial analysis techniques, which is defined as a spatial and temporal interval for a measurement or observation and is determined by the spatial extent of study area or the measurement unit. In order to acquire the optimum scale for a particular subject (i.e., coastal wetlands), measuring and representing the characteristics of attribute information extracted from the remotely sensed images are required. This study aims to explore and analyze the scale effects of attribute information extracted from remotely sensed coastal wetlands images. Specifically, it is focused on identifying the effects of scale in response to spatial resolution changes and suggesting a methodology for exploring the optimum spatial resolution. The LANDSAT TM image of Sunchon Bay was classified by a supervised classification method, Six land cover types were classified and the Kappa index for this classification was 84.6%. In order to explore the effects of scale in the classification procedure, a set of images that have different spatial resolutions were created by a aggregation method. Coarser images were created with the original image by averaging the DN values of neighboring pixels. Sixteen images whose resolution range from 30 m to 480 m were generated and classified to obtain land cover information using the same training set applied to the initial classification. The values of Kappa index show a distinctive pattern according to the spatial resolution change. Up to 120m, the values of Kappa index changed little, but Kappa index decreased dramatically at the 150m. However, at the resolution of 240 m and 270m, the classification accuracy was increased. From this observation, the optimum resolution for the study area would be either at 240m or 270m with respect to the classification accuracy and the best quality of attribute information can be obtained from these resolutions. Procedures and methodologies developed from this study would be applied to similar kinds and be used as a methodology of identifying and defining an optimum spatial resolution for a given problem.

  • PDF

Design of Embedded Security Controller Based on Client Authentication Utilizing User Movement Information (사용자의 이동정보를 활용한 클라이언트 인증 기반의 임베디드 보안 컨트롤러 설계)

  • Hong, Suk-Won
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.163-169
    • /
    • 2020
  • A smart key has been used in a variety of embedded environments and there also have been attacks from a remote place by amplifying signals at a location of a user. Existing studies on defence techniques suggest multiple sensors and hash functions to improve authentication speed; these, however, increase the electricity usage and the probability of type 1 error. For these reasons, I suggest an embedded security controller based on client authentication and user movement information improving the authentication method between a controller and a host device. I applied encryption algorithm to the suggested model for communication using an Arduino board, GPS, and Bluetooth and performed authentication through path analysis utilizing user movement information for the authentication. I found that the change in usability was nonsignificant when performing actions using the suggested model by evaluating the time to encode and decode. The embedded security controller in the model can be applied to the system of a remote controller for a two-wheeled vehicle or a mobile and stationary host device; in the process of studying, I found that encryption and decryption could take less then 100ms. The later study may deal with protocols to speed up the data communication including encryption and decryption and the path data management.

A Study on the Relationship between Land Cover Type and Urban Temperature - focused on Gimhae city - (토지피복유형 특성과 도시 온도의 관계 분석 - 김해시를 대상으로 -)

  • SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.65-81
    • /
    • 2019
  • This study analyzed the relationship of land cover type, urban temperature in Gimhae city, Gyeongsangnam-do, South Korea. Date were used for land cover map, MODIS LST, and detailed temperature data on the Korean Peninsula based on RCP between 2000 and 2010. The correlation between urban area and surface temperature was 0.417, 0.512 for agricultural area and -0.607 for forest area. The correlation between surface temperature and air temperature was 0.301. The relationship with air temperature was analyzed as 0.275 for urban area, agriculture area 0.226, forest area 0.350. Urban and agricultural areas showed increased surface and air temperature as the area increased, while forest areas showed opposite improvements. In structural equation models, urban and agricultural areas had direct effects on the rise of surface temperature, whle forest areas had direct effects on the reduction of air temperature. In the future, it is necessary to use measured temperature data near the surface to understand the relationship between surface temperature and temperature according to the changes in spatial characteristics, which will prepare measures for urban heat island mitigation at the level of urban and environmental planning.