• 제목/요약/키워드: 워터젯

검색결과 77건 처리시간 0.027초

워터젯 추진 고속선의 부가물이 침로안정성에 미치는 영향 (The Effect of Appendages of a Water-Jet Propelled High Speed Vessel on the Course Keeping Ability)

  • 박한솔;김동진;이성균;박종용;이기표
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.357-362
    • /
    • 2011
  • It has been often reported that a water-jet propelled high speed vessel lost the course keeping ability in seaway. In this study, model tests of a high speed vessel were performed to measure the running attitude and to check the course keeping ability. The model ship may lose the course keeping ability due to bad running attitudes such as bow drop. So model tests were carried out to improve the running attitude by changing the position of longitudinal center of gravity and using appendages at the bow and the stern of a model. The position of lateral center of pressure moved toward stern and the course keeping ability was improved by modifying the transom wedge angle.

연마재 워터젯 가공을 이용한 유리 미세 가공 성능 평가 (Evaluation of Efficiency on Glass Precision Machining by using Abrasive Water-jet)

  • 박연경;박강수;김형훈;신보성;고종수;고정상
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.87-93
    • /
    • 2010
  • This paper presents an evaluation of efficiency on glass precision machining by using abrasive water-jet machine. In this study, problems of conventional water-jet machining are examined experimentally and are analysized numerically. Especially, the reason of whitening on the machined surface of biochip glass is determined. It is found that the mass flow rate of abrasive input and transverse speed of water-jet are key parameters to control the direct machining of micro hole and channel on a glass substrate. Based on results of experimental analysis, possibility of direct fabrication of micro holes and channels on a glass substrate is successfully confirmed.

나노스케일 워터젯 가공에 대한 분자시뮬레이션 연구 (Molecular Simulation of Nano-Scale Waterjet Machining)

  • 이상훈;김현준;김태욱
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.216-219
    • /
    • 2023
  • This study employs molecular dynamics simulations to investigate the material behavior of workpieces in waterjet machining processes. To gain fundamental insights into waterjet machining, simulations were conducted using pure water, excluding abrasive particles. The simulation model comprised thousands of water molecules interacting with a single crystal metal workpiece. Water molecule clusters were imparted with various velocities to initiate collisions with the metal workpiece. The material behavior of the metal surface was analyzed with respect to the applied velocity conditions, considering the intricate interplay between water molecules and the workpiece at the atomic scale. The results demonstrated that the machining of the metal workpiece occurred only when water molecules were endowed with velocities above a certain threshold. In cases where energy was insufficient, the metal workpiece exhibited a slight increase in surface roughness due to mild plastic deformation, without undergoing substantial material removal. When machining occurred, the ejection of material revealed a 3-fold symmetric pattern, confirming that material removal in waterjet machining of the metal workpiece is primarily driven by plastic deformation-induced material ejection. This research provides crucial insights into the mechanisms underlying waterjet machining and enhances our understanding of material behavior during the process. The findings can be valuable in optimizing waterjet machining techniques.

수륙양용장갑차용 워터젯 추진기 캐비테이션 성능 평가 (Evaluation of Waterjet Cavitating Performances for a Amphibious Vehicle )

  • 한재문;김도준;서정일;김태형;김건도;이진석
    • 대한조선학회논문집
    • /
    • 제60권5호
    • /
    • pp.296-304
    • /
    • 2023
  • Cavitation tests for a waterjet propulsor of an amphibious vehicle are carried out in the Large Cavitation Tunnel. Waterjet pump performances and cavitation characteristics including thrust breakdown performances are investigated in the tests. In addition, cavitation characteristics for waterjet propulsors working inside the intake are calculated by using a commercial CFD code, Star-CCM+. Sliding mesh is implemented to a rotating impeller and the k-epsilon turbulence model is chosen. Cavitation bubble growth and collapse are estimated using the Schnerr-Sauer cavitation model based on Rayleigh-Plasset equation. Calculated results agree fairly well with experimental results. The re-design of the waterjet propulsor is performed to enhance waterjet cavitating performances and calculated results show that waterjet thrust breakdown characteristics are significantly improved.

입자 워터 젯의 이송속도가 공작물의 치수정밀도에 미치는 영향 (Effects of Traverse Speed on Dimensional Error in Abrasive Water-Jet)

  • 곽재섭;하만경
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.1-7
    • /
    • 2004
  • Abrasive water-jet(AWJ) machining can cut various materials such as metal, glass and plastics. However, the AWJ machining has some troubles including kerf, rounding and side taper. In this study, we experimently investigated the correlation between the traverse speed of the abrasive water-jet and the dimensional error of the workpiece according to the thickness and the types of the material. The specimen was the stainless steel and the mild steel and the predetermined contour cutting was conducted. A comer radius error, an uncut width and a kerf were measured and evaluated.

노후하수관 워터젯분사장치의 분사조건에 따른 열전달특성에 관한 연구 (A Study on the Heat Transfer Characteristics of Water-Jet-Impingement)

  • 노홍구;임경빈;노종호;이영기;이성철;고준빈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1190-1194
    • /
    • 2008
  • The study aims to analyzed and identify the heat transfer characteristics of water-jet-impingement with use of 3-D numerical-analysis in order to design the old water duct. The temperature comparison processes were done with various duct flows. In addition, the optimal conditions of water-jet-impingement were proposed as jet-pressure, the temperature on the beat plane, and so on.

  • PDF

워터젯 노즐의 길이와 내부 나선 구조 유무에 따른 유체거동에 관한 전산해석 (A Study on the Simulation Analysis of Nozzle Length and Inner Spiral Structure of a Waterjet)

  • 곽청렬;신보성;고정상;김문정;유찬주;윤단희
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.118-123
    • /
    • 2017
  • It is well known that water jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics, and composite materials because of some advantages, such as heatless and non-contacting cutting different from the laser beam machining. In this paper, we proposed the simulation model of waterjet by lengths and the inner spiral structure of the nozzle. The simulation results show that the outlet velocity of the nozzle is faster than the inlet. Furthermore, we found rapid velocity reduction after passing through the outlet. The nozzle of diameter ${\phi}500$ and length 70mm, shows the optimal fluid width and velocity distribution. Also, the nozzle with inner spiral structure shows a Gaussian distribution of velocity and this model is almost twice as fast as the model without spiral structure, within the effective standoff distance (2.5 mm). In the future, when inserting abrasive material into the waterjet, we plan to analyze the fluid flow and the particle behavior through a simulation model.

수조실험을 통한 해저지반 굴삭용 워터젯 장비의 성능평가에 관한 연구 (Study on Performance Evaluation of Subsea Waterjet Trenching Machine Using Water Tank)

  • 나경원;조효제;백동일;황재혁;한성훈;장민석;김재희
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.470-474
    • /
    • 2015
  • The demand for subsea cables and pipelines that transfer marine energy resources onshore has recently increased. Laying these underground after trenching is one engineering method to stabilize exposed subsea cables and pipelines. This experimental study found the optimum conditions for operating two types of waterjet arms mounted on an ROV trencher. A waterjet arm for trenching the seabed was scaled down at a ratio of 1:6, and a comparative analysis was conducted using diverse parameters. The results of this research provide a practical fundamental database to assist in making decisions about the ROV trencher performance in advance.