• Title/Summary/Keyword: 워크케이스

Search Result 57, Processing Time 0.026 seconds

A Business Service Identification Techniques Based on XL-BPMN Model (XL-BPMN 모델 기반 비즈니스 서비스 식별 기법)

  • Song, Chee-Yang;Cho, Eun-Sook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.3
    • /
    • pp.125-138
    • /
    • 2016
  • The service identification in service-oriented developments has been conducted by based on workflow, goals, scenarios, usecases, components, features, and patterns. However, the identification of service by semantic approach at the business value view was not detailed yet. In order to enhance accuracy of identifying business service, this paper proposes a method for identifying business service by analyzing syntax and semantics in XL-BPMN model. The business processes based on business scenario are identified, and they are designed in a XL-BPMN business process model. In this business process model, an unit business service is identified through binding closely related activities by the integrated analysis result of syntax patterns and properties-based semantic similarities between activities. The method through XL-BPMN model at upper business levels can identify the reusable unit business service with high accuracy and modularity. It also can accelerate more service-oriented developments by reusing identified services.

Project Work and Asynchronous Voice Communication (프로젝트 작업과 비실시간 음성 커뮤니케이션)

  • Kim Min-Kyung;Kim Hee-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.681-690
    • /
    • 2006
  • With the rapid development of network and multimedia technologies, computer mediated communication has been realized and there has been a great potential to use and research on asynchronous voice communication systems. This paper reports a case study where 6 groups(3 for documentation work, 3 for software development) of 24 people who used voice mail when carrying out their projects. The purpose of this study is to obtain an overall understanding of usability of voice mail which is a typical example of asynchronous voice communication systems, under a particular situation where project works are performed. Through the study, we came to understand general purposes of usage of voice mail, patterns of using it revealed during the project process, different ways of using it according to different types of projects, and reasons why people are currently not likely to use voice mail. The results hopefully provide systems developers with a guideline to understand the nature of voice mail from users' perspectives.

  • PDF

A Study on Conformance Testing Method to Verify the BioAPI Based System Module (BioAPl기반 시스템 모듈을 검증하기 위한 적합성시험 방법 연구)

  • Lee Yoo-Young;Kwon Young-Bin
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.759-768
    • /
    • 2004
  • Recently the biometric recognition technology is intensively studied and the standardization of the technology has been highly demanded for its commercialization. Currently many blometric recognition products are being developed based on the BioAPl(Biometric Application Program-ming Interface) specification. However, the reliable testing tools (or scenarios) to evaluate performance and conformance of the products are not shown yet. In this paper, a conformance testing method is presented, which verifies a biometric recognition system to meet the requirements of the BioAPl standard. Two different testing procedures are used in the proposed method. The first procedure evaluates that each functions offered in the BioAPl specification are correctly implemented and that the functions are actually used in the system. Through the Procedure, a BSP(Biometric Service Provider) system is executed on the framework of the BioAPl functions. It requires selection of parameters and prece-dent functions that should be executed first. The second procedure evaluates the abilities of module management, handling operations and ver-ification process by the analysis of the test cases. It tests the correctness of the system operation when a testing scenario is given. The proposed testing method is applied on a fingerprint verification BSP using the sample BSP provided by the BioAPl consortium. The experimental results shows the benefits of the proposed testing method.

A Study on Digitalization and Digital Transformation of the Construction Industry for Smart Construction: Utilization of Data Hub and Application Programming Interface(API) (스마트 건설을 위한 건설산업의 디지털화와 디지털 전환 방안 연구: 데이터 허브와 응용프로그래밍 인터페이스(API) 활용)

  • Kim, Ji-Myong;Son, Seunghyun;Yun, Gyeong Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.379-390
    • /
    • 2022
  • While the construction industry is striving to make changes suitable for the 4th industrial revolution era through the introduction of 4th industrial revolution technologies, such change is progressing more slowly than in other industries. Nevertheless, the recent digitization and digital transformation of the construction industry can provide a new paradigm to address and innovate the chronic problems faced by the construction industry. Therefore, in this study, a case study using a data hub and API for use of the data hub, which is essential for digitalization and digital transformation, was conducted, and the efficiency and feasibility of using the data hub and API were considered. When the API system was introduced, it was found that the average budget savings per person was about 23%, and the costbenefit ratio was about 4.4 times higher, indicating that the feasibility of the project was very high. The results and framework of this study can serve as fundamental research data for related research, and provide a worthy case study to promote the introduction of related technologies. This will ultimately contribute to digitalization and digital transformation for smartization of the construction industry.

Cox Model Improvement Using Residual Blocks in Neural Networks: A Study on the Predictive Model of Cervical Cancer Mortality (신경망 내 잔여 블록을 활용한 콕스 모델 개선: 자궁경부암 사망률 예측모형 연구)

  • Nang Kyeong Lee;Joo Young Kim;Ji Soo Tak;Hyeong Rok Lee;Hyun Ji Jeon;Jee Myung Yang;Seung Won Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.260-268
    • /
    • 2024
  • Cervical cancer is the fourth most common cancer in women worldwide, and more than 604,000 new cases were reported in 2020 alone, resulting in approximately 341,831 deaths. The Cox regression model is a major model widely adopted in cancer research, but considering the existence of nonlinear associations, it faces limitations due to linear assumptions. To address this problem, this paper proposes ResSurvNet, a new model that improves the accuracy of cervical cancer mortality prediction using ResNet's residual learning framework. This model showed accuracy that outperforms the DNN, CPH, CoxLasso, Cox Gradient Boost, and RSF models compared in this study. As this model showed accuracy that outperformed the DNN, CPH, CoxLasso, Cox Gradient Boost, and RSF models compared in this study, this excellent predictive performance demonstrates great value in early diagnosis and treatment strategy establishment in the management of cervical cancer patients and represents significant progress in the field of survival analysis.

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.