• Title/Summary/Keyword: 워게임 시뮬레이션(창조 21모델)

Search Result 2, Processing Time 0.017 seconds

A Study on the Method for Converting the Unit Database from Training-model into Analysis-model : Focused on the 'Chang-Jo21' and 'Vision21' model (훈련용 워게임 모델의 부대 DB를 분석용 워게임 모델에 재사용하기 위한 변환방법 연구 : 창조21모델과 비전21모델을 중심으로)

  • Lee, Yong-Bok;Park, Min-Hyoung;Kim, Yeek-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.159-167
    • /
    • 2019
  • In the field of defense M&S, we are actively pursuing researches that interoperable multiple war game models to simulate various combat environments at the same time. Although the 'unit DB(Database)' for operating the war game models is originated from the identical data, it has been recognized that the method of expressing the attribute of the data is different and the cross reference is impossible. As a result, it makes unnecessary time and effort in establishing the same unit DB in the organizations that operate the war game model. In this study, a method of reusing the unit DB of the training war game model to the analysis war game model with similar resolution and simulated logic was applied to the actual field. For this purpose, we defined the procedure for converting the unit DB by analyzing metadata of the 'Chang-Jo21', a combat training model for corps and division, and the 'Vision21', an analysis model for corps and division operation plan. And we introduced an algorithm that can map different metadata of two unit DBs. This study was meaningful as the first attempt to map and integrate heterogeneous metadata semantically for the reuse of unit DB between different war game models in defense M&S field. Also, it provided implications for the necessity of paradigm shift that reuse of the unit DB between two different war game models is possible and the need for standardization of the unit DB metadata in the defense M&S filed.

A Study of Artificial Intelligence Learning Model to Support Military Decision Making: Focused on the Wargame Model (전술제대 결심수립 지원 인공지능 학습방법론 연구: 워게임 모델을 중심으로)

  • Kim, Jun-Sung;Kim, Young-Soo;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • Commander and staffs on the battlefield are aware of the situation and, based on the results, they perform military activities through their military decisions. Recently, with the development of information technology, the demand for artificial intelligence to support military decisions has increased. It is essential to identify, collect, and pre-process the data set for reinforcement learning to utilize artificial intelligence. However, data on enemies lacking in terms of accuracy, timeliness, and abundance is not suitable for use as AI learning data, so a training model is needed to collect AI learning data. In this paper, a methodology for learning artificial intelligence was presented using the constructive wargame model exercise data. First, the role and scope of artificial intelligence to support the commander and staff in the military decision-making process were specified, and to train artificial intelligence according to the role, learning data was identified in the Chang-Jo 21 model exercise data and the learning results were simulated. The simulation data set was created as imaginary sample data, and the doctrine of ROK Army, which is restricted to disclosure, was utilized with US Army's doctrine that can be collected on the Internet.