• Title/Summary/Keyword: 움직임 탐색영역 제한

Search Result 14, Processing Time 0.019 seconds

Hierarchical Motion Estimation Method for MASF (MASF 적용을 위한 계층적 움직임 추정 기법)

  • 김상연;김성대
    • Journal of Broadcast Engineering
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 1996
  • MASF is a kind of temporal filter proposed for noise reduction and temporal band limitation. MASF uses motion vectors to extract temporal information in spatial domain. Therefore, inaccurate motion information causes some distortions in MASF operation. Currently, bilinear interpolation after BMA(Block Matching Algorithm) is used for the motion estimation sheme of MASF. But, this method results in unreliable estimation when the object in image sequence has larger movement than the maximum displacement assumed in BMA or the input images are severely corrupted with noise. In order to i:;olve this problem, we analyse the effect of inaccurate motion on MASF and propose a hierarchical motion estimation algorithm based on the analysis results. Experimental results show that the proposed method produces reliable output under large motion and noisy situations.

  • PDF

Limiting Motion Search Range for the Pseudo Video Sequence-based Light Field Image Coding (유사 비디오 시퀀스 기반의 라이트필드 영상 부호화를 위한 움직임 탐색 영역 제한)

  • Yim, Jonghoon;Duong, Vinh Van;Huu, Thuc Nguyen;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.182-183
    • /
    • 2022
  • The large data volume of light field (LF) image has motivated much research on how to compress the data volume more efficiently. One of the approaches is to compress LF images after representing them in the form of pseudo video sequence. In this way, the pseudo temporal redundancy between views can be exploited by motion estimation and compensation. Based on our observation that images obtained by LF cameras have small range of disparity values between adjacent views, we propose to limit the motion search range to reduce the time complexity of motion estimation. Our experimental results show that a smaller motion search range reduces the encoding time while not affecting the bitrate of H.266/VVC much.

  • PDF

A Study on the Method of Minimizing the Bit-Rate Overhead of H.264 Video when Encrypting the Region of Interest (관심영역 암호화 시 발생하는 H.264 영상의 비트레이트 오버헤드 최소화 방법 연구)

  • Son, Dongyeol;Kim, Jimin;Ji, Cheongmin;Kim, Kangseok;Kim, Kihyung;Hong, Manpyo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.311-326
    • /
    • 2018
  • This paper has experimented using News sample video with QCIF ($176{\times}144$) resolution in JM v10.2 code of H.264/AVC-MPEG. The region of interest (ROI) to be encrypted occurred the drift by unnecessarily referring to each frame continuously in accordance with the characteristics of the motion prediction and compensation of the H.264 standard. In order to mitigate the drift, the latest related research method of re-inserting encrypted I-picture into a certain period leads to an increase in the amount of additional computation that becomes the factor increasing the bit-rate overhead of the entire video. Therefore, the reference search range of the block and the frame in the ROI to be encrypted is restricted in the motion prediction and compensation for each frame, and the reference search range in the non-ROI not to be encrypted is not restricted to maintain the normal encoding efficiency. In this way, after encoding the video with restricted reference search range, this article proposes a method of RC4 bit-stream encryption for the ROI such as the face to be able to identify in order to protect personal information in the video. Also, it is compared and analyzed the experimental results after implementing the unencrypted original video, the latest related research method, and the proposed method in the condition of the same environment. In contrast to the latest related research method, the bit-rate overhead of the proposed method is 2.35% higher than that of the original video and 14.93% lower than that of the latest related method, while mitigating temporal drift through the proposed method. These improved results have verified by experiments of this study.

HEVC Encoder Optimization using Depth Information (깊이정보를 이용한 HEVC의 인코더 고속화 방법)

  • Lee, Yoon Jin;Bae, Dong In;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.640-655
    • /
    • 2014
  • Many of today's video systems have additional depth camera to provide extra features such as 3D support. Thanks to these changes made in multimedia system, it is now much easier to obtain depth information of the video. Depth information can be used in various areas such as object classification, background area recognition, and so on. With depth information, we can achieve even higher coding efficiency compared to only using conventional method. Thus, in this paper, we propose the 2D video coding algorithm which uses depth information on top of the next generation 2D video codec HEVC. Background area can be recognized with depth information and by performing HEVC with it, coding complexity can be reduced. If current CU is background area, we propose the following three methods, 1) Earlier stop split structure of CU with PU SKIP mode, 2) Limiting split structure of CU with CU information in temporal position, 3) Limiting the range of motion searching. We implement our proposal using HEVC HM 12.0 reference software. With these methods results shows that encoding complexity is reduced more than 40% with only 0.5% BD-Bitrate loss. Especially, in case of video acquired through the Kinect developed by Microsoft Corp., encoding complexity is reduced by max 53% without a loss of quality. So, it is expected that these techniques can apply real-time online communication, mobile or handheld video service and so on.