• Title/Summary/Keyword: 움직임이 있는 객체

Search Result 55, Processing Time 0.023 seconds

A Hardware Implementation of EGML-based Moving Object Detection Algorithm (EGML 기반 이동 객체 검출 알고리듬의 하드웨어 구현)

  • Kim, Gyeong-hun;An, Hyo-sik;Shin, Kyung-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2380-2388
    • /
    • 2015
  • A hardware implementation of MOD(moving object detection) algorithm using EGML(effective Gaussian mixture learning)- based background subtraction to detect moving objects in video is described. Some approximations of EGML calculations are applied to reduce hardware complexity, and pipelining technique is adopted to improve operating speed. The MOD processor designed in Verilog-HDL has been verified by FPGA-in-the-loop verification using MATLAB/Simulink. The MOD processor has 2,218 slices on the Virtex5-XC5VSX95T FPGA device and its throughput is 102 MSamples/s at 102 MHz clock frequency. Evaluation results of the MOD processor for 12 images in the IEEE CDW-2012 dataset show that the average recall value is 0.7631, the average precision value is 0.7778 and the average F-measure value is 0.7535.

Background Subtraction Algorithm Based on Multiple Interval Pixel Sampling (다중 구간 샘플링에 기반한 배경제거 알고리즘)

  • Lee, Dongeun;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • Background subtraction is one of the key techniques for automatic video content analysis, especially in the tasks of visual detection and tracking of moving object. In this paper, we present a new sample-based technique for background extraction that provides background image as well as background model. To handle both high-frequency and low-frequency events at the same time, multiple interval background models are adopted. The main innovation concerns the use of a confidence factor to select the best model from the multiple interval background models. To our knowledge, it is the first time that a confidence factor is used for merging several background models in the field of background extraction. Experimental results revealed that our approach based on multiple interval sampling works well in complicated situations containing various speed moving objects with environmental changes.

Object-Based Video Segmentation Using Spatio-temporal Entropic Thresholding and Camera Panning Compensation (시공간 엔트로피 임계법과 카메라 패닝 보상을 이용한 객체 기반 동영상 분할)

  • 백경환;곽노윤
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.126-133
    • /
    • 2003
  • This paper is related to a morphological segmentation method for extracting the moving object in video sequence using global motion compensation and two-dimensional spatio-temporal entropic thresholding. First, global motion compensation is performed with camera panning vector estimated in the hierarchical pyramid structure constructed by wavelet transform. Secondly, the regions with high possibility to include the moving object between two consecutive frames are extracted block by block from the global motion compensated image using two-dimensional spatio-temporal entropic thresholding. Afterwards, the LUT classifying each block into one among changed block, uncertain block, stationary block according to the results classified by two-dimensional spatio-temporal entropic thresholding is made out. Next, by adaptively selecting the initial search layer and the search range referring to the LUT, the proposed HBMA can effectively carry out fast motion estimation and extract object-included region in the hierarchical pyramid structure. Finally, after we define the thresholded gradient image in the object-included region, and apply the morphological segmentation method to the object-included region pixel by pixel and extract the moving object included in video sequence. As shown in the results of computer simulation, the proposed method provides relatively good segmentation results for moving object and specially comes up with reasonable segmentation results in the edge areas with lower contrast.

  • PDF

A Fast Motion Detection and Tracking Algorithm for Automatic Control of an Object Tracking Camera (객체 추적 카메라 제어를 위한 고속의 움직임 검출 및 추적 알고리즘)

  • 강동구;나종범
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.181-191
    • /
    • 2002
  • Video based surveillance systems based on an active camera require a fast algorithm for real time detection and tracking of local motion in the presence of global motion. This paper presents a new fast and efficient motion detection and tracking algorithm using the displaced frame difference (DFD). In the Proposed algorithm, first, a Previous frame is adaptively selected according to the magnitude of object motion, and the global motion is estimated by using only a few confident matching blocks for a fast and accurate result. Then, a DFD is obtained between the current frame and the selected previous frame displaced by the global motion. Finally, a moving object is extracted from the noisy DFD by utilizing the correlation between the DFD and current frame. We implement this algorithm into an active camera system including a pan-tilt unit and a standard PC equipped with an AMD 800MHz processor. The system can perform the exhaustive search for a search range of 120, and achieve the processing speed of about 50 frames/sec for video sequences of 320$\times$240. Thereby, it provides satisfactory tracking results.

Hybrid Down-Sampling Method of Depth Map Based on Moving Objects (움직임 객체 기반의 하이브리드 깊이 맵 다운샘플링 기법)

  • Kim, Tae-Woo;Kim, Jung Hun;Park, Myung Woo;Shin, Jitae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.918-926
    • /
    • 2012
  • In 3D video transmission, a depth map being used for depth image based rendering (DIBR) is generally compressed by reducing resolution for coding efficiency. Errors in resolution reduction are recovered by an appropriate up-sampling method after decoding. However, most previous works only focus on up-sampling techniques to reduce errors. In this paper, we propose a novel down-sampling technique of depth map that applies different down-sampling rates on moving objects and background in order to enhance human perceptual quality. Experimental results demonstrate that the proposed scheme provides both higher visual quality and peak signal-to-noise ratio (PSNR). Also, our method is compatible with other up-sampling techniques.

A Study on NPC Grouping of 3D Game using Gabor Characteristics (가버 특성을 이용한 3D 게임의 NPC 그룹핑에 관한 연구)

  • Park, Chang-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2836-2842
    • /
    • 2010
  • An NPC grouping method is proposed for various 3D games depending on their characteristics. Immovable objects tend to have particular orientation features in their Gabor filtering results whereas the movable objects controlled by AI appearing as a human or an animal do not. First of all, We analyzed directional and frequency domain features in the NPC object and configured them as 24 Gabor filter banks. Then, 24-dimensional feature vectors according to the scale and direction of the filter are calculated. Each extracted vector represents the energy of a certain direction. This energy indicates the particular direction strength of the object texture. Thus, using this property, NPCs could be grouped as artificial objects and natural objects effectively and it draws the game more speed and strategic actions as a result.

A View Interpolation Method for Multi-view Video of Large Disparity (변위 범위가 큰 다시점 비디오에 적합한 영상보간법)

  • Lee, Cheon;Oh, Kwan-Jung;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.55-58
    • /
    • 2006
  • 차세대 방송서비스 개발의 일환으로 관심을 모으고 있는 다시점 비디오 부호화(multi-view video coding, MVC) 방식은 인접한 여러 대의 카메라로 동시에 획득한 영상을 효과적으로 압축하는데 그 목적이 있다. 이때, 중간시전 영상을 생성하여 부호화하는 과정의 참조영상으로 이용할 수 있으며, 이를 위해서는 다시점 비디오 특성에 맞는 영상보간 방법이 필요하다. 기존에 제안되었던 영상보간법은 변위의 검색범위를 초기에 설정하여 블록정합을 이용하여 화소 단위로 변위를 측정하기 때문에 카메라 사이의 거리가 크거나 객체의 움직임이 커서 변위의 변동이 심한 영상에서는 안정적인 화질의 영상을 얻기 어렵다. 또한, 고정된 크기의 블록을 이용하여 전체 변위를 측정하므로 객체의 변위차가 큰 영역에서 변위 오류가 많이 발생한다. 본 논문에서는 이와 같은 문제를 해결하여 보다 개선된 화질의 중간시점 영상을 얻기 위한 새로운 영상보간법을 제안한다. 영역분할을 이용한 초기의 변위측정 과정에서, 처음부터 최대 변위의 범위를 설정하는 대신에 블록 단위로 대략적인 변위륵 측정한 후에, 가변 블록을 이용하여 보다 세밀한 변위를 측정한다. 이 방법은 변위차가 큰 객체의 경계 부분에서 보다 정확하게 변위를 측정 할 수 있으므로, 화소 단위로 변위를 측정할 때 이전에 추한 변위 정보를 바탕으로 각 화소별로 검색 범위를 설정한다. 적응적으로 설정된 검색 범위를 이용하여 화소 단위의 변위를 측정하면 보다 개선된 변위를 얻을 수 있다. 추가적으로, 변위측정 과정에서 발생하는 변위의 오류를 최대한 줄이기 위해 각 단계별로 미디언 필터를 이용하여 변위 오류를 수정하였다. 본 논문에서 제안한 방법으로 실험한 결과 기존의 영상보간 방법보다 화질이 약 $1{\sim}4dB$ 정도 개선되었다.필, 투명도 등을 위성원격탐사 자료와 GIS를 이용하여 공간분석을 실시하고, 공간분포도를 작성함으로써 대상해역의 해양환경을 파악하였다. 본 연구결과, 분석된 위성자료가 현장조사에 의한 검증이 이루어지지 않을 경우, 영상자료분석을 통한 표층수온 추출은 대기 중의 수증기와 에어로졸에 의한 계산치의 오차가 반영되기 때문에 실측치 보다 낮게 평가 될 수 있으므로, 반드시 이에 대한 검증이 필요함을 알 수 있었다. 현지관측에 비해 막대한 비용과 시간을 절약할 수 있는 위성영상해석방법을 이용한 방법은 해양수질파악이 가능할 것으로 판단되며, GIS를 이용하여 다양하고 복잡한 자료를 데이터베이스화함으로써 가시화하고, 이를 기초로 공간분석을 실시함으로써 환경요소별 공간분포에 대한 파악을 통해 수치모형실험을 이용한 각종 환경영향의 평가 및 예측을 위한 기초자료로 이용이 가능할 것으로 사료된다.염총량관리 기본계획 시 구축된 모형 매개변수를 바탕으로 분석을 수행하였다. 일차오차분석을 이용하여 수리매개변수와 수질매개변수의 수질항목별 상대적 기여도를 파악해 본 결과, 수리매개변수는 DO, BOD, 유기질소, 유기인 모든 항목에 일정 정도의 상대적 기여도를 가지고 있는 것을 알 수 있었다. 이로부터 수질 모형의 적용 시 수리 매개변수 또한 수질 매개변수의 추정 시와 같이 보다 세심한 주의를 기울여 추정할 필요가 있을 것으로 판단된다.변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는 거래전략은

  • PDF

A Real-time People Counting Algorithm Using Background Modeling and CNN (배경모델링과 CNN을 이용한 실시간 피플 카운팅 알고리즘)

  • Yang, HunJun;Jang, Hyeok;Jeong, JaeHyup;Lee, Bowon;Jeong, DongSeok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.70-77
    • /
    • 2017
  • Recently, Internet of Things (IoT) and deep learning techniques have affected video surveillance systems in various ways. The surveillance features that perform detection, tracking, and classification of specific objects in Closed Circuit Television (CCTV) video are becoming more intelligent. This paper presents real-time algorithm that can run in a PC environment using only a low power CPU. Traditional tracking algorithms combine background modeling using the Gaussian Mixture Model (GMM), Hungarian algorithm, and a Kalman filter; they have relatively low complexity but high detection errors. To supplement this, deep learning technology was used, which can be trained from a large amounts of data. In particular, an SRGB(Sequential RGB)-3 Layer CNN was used on tracked objects to emphasize the features of moving people. Performance evaluation comparing the proposed algorithm with existing ones using HOG and SVM showed move-in and move-out error rate reductions by 7.6 % and 9.0 %, respectively.

Development of a Fall Detection System Using Fish-eye Lens Camera (어안 렌즈 카메라 영상을 이용한 기절동작 인식)

  • So, In-Mi;Han, Dae-Kyung;Kang, Sun-Kyung;Kim, Young-Un;Jong, Sung-tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.97-103
    • /
    • 2008
  • This study is to present a fainting motion recognizing method by using fish-eye lens images to sense emergency situations. The camera with fish-eye lens located at the center of the ceiling of the living room sends images, and then the foreground pixels are extracted by means of the adaptive background modeling method based on the Gaussian complex model, which is followed by tracing of outer points in the foreground pixel area and the elliptical mapping. During the elliptical tracing, the fish-eye lens images are converted to fluoroscope images. the size and location changes, and moving speed information are extracted to judge whether the movement, pause, and motion are similar to fainting motion. The results show that compared to using fish-eye lens image, extraction of the size and location changes. and moving speed by means of the conversed fluoroscope images has good recognition rates.

  • PDF

Human Activity Pattern Recognition Using Motion Information and Joints of Human Body (인체의 조인트와 움직임 정보를 이용한 인간의 행동패턴 인식)

  • Kwak, Nae-Joung;Song, Teuk-Seob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1179-1186
    • /
    • 2012
  • In this paper, we propose an algorithm that recognizes human activity patterns using the human body's joints and the information of the joints. The proposed method extracts the object from inputted video, automatically extracts joints using the ratio of the human body, applies block-matching algorithm for each joint and gets the motion information of joints. The proposed method uses the joints to move, the directional vector of motions of joints, and the sign to represent the increase or decrease of x and y coordinates of joints as basic parameters for human recognition of activity. The proposed method was tested for 8 human activities of inputted video from a web camera and had the good result for the ration of recognition of the human activities.