• Title/Summary/Keyword: 운동형상학

Search Result 138, Processing Time 0.023 seconds

Design and Test of Lateral/Directional Control Law of a Tailless UAV Using Spoilers (스포일러를 이용한 무미익 항공기의 횡방향축 제어기설계 및 시험)

  • Hong, Jin-sung;Hwang, Sun-yu;Lee, Kwang-hyun;Hur, Gi-bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.422-428
    • /
    • 2019
  • A tailless or Blended-Wing-Body(BWB) shaped configuration is highlighted for UCAV with low RCS characteristics. The BWB configuration is characterized by its directional static instability and low controllability. To control the directional movement of the BWB configured vehicle, directional thrust vectoring equipment or drag rudder typed control surfaces which utilize the drag differences of the wing can be considered. This paper deals with a BWB shaped configuration using a spoiler and describes the lateral-directional aerodynamic characteristics of the vehicle. In addition, it is shwon that the lateral-directional motion can be controlled effectively by using the classical PI control structure. This control law is verified by flight test and showed adequate for the tailless BWB shaped UAV.

A Numerical Study on the Appendage Shape for a Heave Motion Reduction of Floating Cylindrical Structure (원통형 부유체의 heave운동 저감을 위한 부가물 형상에 관한 수치적 연구)

  • Lim, Geun-Nam;Kim, Sang-Hyun;Kim, Dong-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.449-456
    • /
    • 2015
  • In this paper, attaching various damping plates to the cylindrical structure and performing numerical simulations try to study heave RAO and natural period for cylinder. Most of all, we identified heave RAO of the cylinder by simulations of the motion and the wave. And then, we performed numerical simulations by changing the size and shape of heave damping plate attached to the cylinder and reviewed the heave RAO and natural period for each case. The conclusions of this research are as follows. Firstly, the natural period of cylindrical structure is increased by attached to the cylinder with heave damping plate and the heave RAO of cylindrical structure is reduced in the peak period for incident wave by attached to the cylinder with from the size of 1.30D for heave damping plate. Secondly, circular plate has long natural period than Y-type plate in all of these sections. Finally, the motion response spectrum considering the marine environment of Piranema field was identified as the heave motion of cylindrical structure is remarkably reduced with both circular plate and Y-type plate in the peak period for incident wave.

New Method for Station Keeping of Geostationary Spacecraft Using Relative Orbital Motion and Optimization Technique (상대 운동과 최적화 기법을 이용한 정지궤도 위치유지에 관한 연구)

  • Jung, Ok-Chul;No, Tae-Soo;Lee, Sang-Cherl;Yang, Koon-Ho;Choi, Seong-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • In this paper, a method of station keeping strategy using relative orbital motion and numerical optimization technique is presented for geostationary spacecraft. Relative position vector with respect to an ideal geostationary orbit is generated using high precision orbit propagation, and compressed in terms of polynomial and trigonometric function. Then this relative orbit model is combined with optimization scheme to propose a very efficient and flexible method of station keeping planning. Proper selection of objective and constraint functions for optimization can yield a variety of station keeping methods improved over the classical ones. Results from the nonlinear simulation have been shown to support such concept.

Optimal Rotor Blade Design for Tidal In-stream Energy (조류발전용 로터 블레이드의 최적 형상 설계)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • Marine current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop tidal in-stream energy conversion system in coastal area. The objective of study is to investigate harnessing techniques of tidal current energy and to design the a 100 kW horizontal axis tidal turbine using blade element momentum theory with Prandtl's tip loss factor for optimal design procedures. In addition, Influence of Prandtl's tip loss factor at local blade positions as a function of tip speed ratio was studied, and the analysed results showed that power coefficient of designed rotor blade using NACA 63812 was 0.49 at rated tip speed ratio.

Measurement of Rotor Blade Deformation and Motions using Stereo Pattern Recognition Method (SPR 기법을 이용한 회전 블레이드의 변형 및 모션 측정)

  • Park, Jae-Won;Kim, Hong-Il;Han, Jae-Hung;Kim, Do-Hyung;Song, Keun-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.442-450
    • /
    • 2011
  • A measurement system using stereo pattern recognition (SPR) method was configured to measure the rotor blade deformations and motions. An SPR-based measurement system was prepared using six stereo cameras. Through a series of experiments to evaluate the system measurement uncertainty, it was verified that the SPR system had less than 0.2mm standard uncertainty. The combined standard uncertainties for the lead-lag, flapping, and pitching motions were estimated as 0.296mm, 0.209mm, and $0.238^{\circ}$, respectively. The SPR system was installed at a general small-scaled rotor test system at Korea Aerospace Research Institute. The blade motions and elastic deformation were successfully measured under the conditions with rotating speeds of 360rpm or 589rpm, and collective pitch angles of $0^{\circ}$, $4^{\circ}$, or $6^{\circ}$. The advantages of the SPR system was analyzed in comparison with the measurement system used in Higher Harmonic Control Aeroacoustic Rotor Test -II.

Thrust Characteristics of Dual Flapping Airfoils in a Biplane Configuration (복엽기 배치의 복식 플랩핑 에어포일들의 추력 특성)

  • Yu, Young-Bok;Han, Cheol-Heui;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.9-17
    • /
    • 2005
  • The wake patterns and thrust characteristics of dual flapping airfoils in a biplane configuration are investigated using an unsteady panel method. To trace complicated wake shapes behind airfoils, a core addition scheme, a vortex core model, and the fourth order Runge-Kutta convection scheme are employed. Present results are verified by comparing them with flow visualization, exact solution and published computed results. The thickness and camber of thick airfoils has an effect of decreasing thrust. The airfoils produce maximum thrust when the phase angles between plunging and pitching motions are both 90 and 120 degrees. Thrust increases as the plunge velocity is increased, which is also found as the pitch amplitude is stepped up. Thrust decreases when the distance between the airfoils is less than 0.6c.

Prediction of Pitch and Roll Dynamic Derivatives for Flight Vehicle using CFD (전산유체역학을 이용한 비행체의 피치와 롤 동안정 미계수 예측)

  • Lee, Hyung-Ro;Gong, Hyo-Joon;Kim, Beom-Soo;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.395-404
    • /
    • 2012
  • This paper presents computations of the dynamic derivatives of three dimensional flight vehicle configurations using CFD. The pitch dynamic derivatives are computed from the pitch sinusoidal motion, while the roll damping is computed based on steady state calculation using a non-inertial frame method. The Basic Finner and the SDM(Standard Dynamic Model) are chosen for the benchmark tests against other numerical and experimental results. For the flow calculations, a 3-D Euler solver that can be run both on the non-inertial frame and on the inertial frame is developed. A dual-time stepping method is applied for the unsteady time accurate simulations. A good agreement of pitch-roll dynamic derivatives with previously published numerical results and the experimental results is observed.

Reconfiguration Control Using LMI-based Constrained MPC (선형행렬부등식 기반의 모델예측 제어기법을 이용한 재형상 제어)

  • Oh, Hyon-Dong;Min, Byoung-Mun;Kim, Tae-Hun;Tahk, Min-Jea;Lee, Jang-Ho;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • In developing modern aircraft, the reconfiguration control that can improve the safety and the survivability against the unexpected failure by partitioning control surfaces into several parts has been actively studied. This paper deals with the reconfiguration control using model predictive control method considering the saturation of control surfaces under the control surface failure. Linearized aircraft model at trim condition is used as the internal model of model predictive control. We propose the controller that performs optimization using LMI (linear matrix inequalities) based semi-definite programming in case that control surface saturation occurs, otherwise, uses analytic solution of the model predictive control. The performance of the proposed control method is evaluated by nonlinear simulation under the flight scenario of control surface failure.

Runoff Analysis due to the Moving Rainstorms on the Nonsymmetric Basin Shapes (비대칭 유역형상에 대한 이동강우의 유출영향분석)

  • Jeon, Min-Woo
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • The influence of moving rainstorms to runoff was analysed for the nonsymmetric shaped basins using kinematic wave theory. The distribution types of moving rainstorms are uniform, advanced, delayed and intermediate type, the nonsymmetric shaped basins are square, oblong and elongated shape. The runoff hydrographs were simulated and the characteristics were compared with the symmetric shaped basins for the rainstorms moving up, down and cross the basins with various velocities. The smallest differences of peak runoff of symmetric and nonsymmetric basins are appeared in the case of elongated basin, and the largest differences are shown at the oblong basin for the downstream direction. The identical results are shown for the upstream direction. The greatest peak runoff differences are shown in the delayed type rainstorm and the smallest differences are in the advanced type rainstorm for the crossstream direction. The oblong shaped basin generates the longest peak time and shortest peak time for the elongated shape basin.

  • PDF

An External Shape Optimization Study to Maximize the Range of a Guided Missile in Atmospheric Flight (대기권을 비행하는 유도 미사일의 최대 사거리 구현을 위한 외형 형상 최적화 시스템 연구)

  • Yang, Young-Rok;Hu, Sang-Bum;Je, So-Yeong;Park, Chan-Woo;Myong, Rho-Shin;Cho, Tae-Hwan;Hwang, Ui-Chang;Je, Sang-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.519-526
    • /
    • 2009
  • This paper describes a research result of a external shape optimization study to maximize the range of the guided missile with canards and tailfins in atmospheric flight. For this purpose, the external shape optimization program which can enhance the range of a missile was developed, incorporated with the trajectory analysis and the optimization technique. In the trajectory analysis part, Missile DATCOM which utilizes the semi-empirical method was directly connected to the trajectory code to supply the aerodynamic coefficients efficiently at every time step. In the gliding flight trajectory after apogee, a maximum $C_L/C_D$ trim condition calculation module was attached under the assumption of the missile continuously flying at maximum $C_L/C_D$ condition. In the optimization part, a Response Surface Method(RSM) was adopted to reduce the computing time.