DOI QR코드

DOI QR Code

Prediction of Pitch and Roll Dynamic Derivatives for Flight Vehicle using CFD

전산유체역학을 이용한 비행체의 피치와 롤 동안정 미계수 예측

  • 이형로 (인하대학교 항공우주공학과) ;
  • 공효준 (인하대학교 항공우주공학과) ;
  • 김범수 (인하대학교 항공.조선.산업공학부) ;
  • 이승수 (인하대학교 항공.조선.산업공학부)
  • Received : 2012.02.02
  • Accepted : 2012.04.23
  • Published : 2012.05.01

Abstract

This paper presents computations of the dynamic derivatives of three dimensional flight vehicle configurations using CFD. The pitch dynamic derivatives are computed from the pitch sinusoidal motion, while the roll damping is computed based on steady state calculation using a non-inertial frame method. The Basic Finner and the SDM(Standard Dynamic Model) are chosen for the benchmark tests against other numerical and experimental results. For the flow calculations, a 3-D Euler solver that can be run both on the non-inertial frame and on the inertial frame is developed. A dual-time stepping method is applied for the unsteady time accurate simulations. A good agreement of pitch-roll dynamic derivatives with previously published numerical results and the experimental results is observed.

본 논문에서는 전산유체역학을 이용하여 3차원 비행체 형상에 대한 동안정 미계수를 예측하였다. 피치에 대한 미계수는 피치방향의 조화진동운동을 통하여 계산하였고 롤 감쇠계수는 비관성 좌표계에 대한 정상해석을 통하여 계산하였다. 계산은 Basic Finner와 SDM 형상에 대해 수행했으며 다른 연구자의 실험적/수치적 결과와 비교하였다. 유동 계산을 위해 비관성 좌표계와 관성 좌표계에서 모두 사용할 수 있는 3차원 Euler 해석자를 개발하였다. 시간 정확성을 유지한 비정상 해석을 위해 이중시간적분법을 적용하였다. 동안정 미계수계산 결과는 다른 수치 및 실험적 연구 결과들과 잘 일치하는 것을 알 수 있었다.

Keywords

References

  1. Bryan, G. H., "Stability in Aviation," MacMillan, London, 1911.
  2. Williams, J. E. and Vukelich, S. R., "USAF Stability and Control DATCOM," 1979.
  3. Murphy, C. H., "Free Flight Motion of Symmetric Missiles," U.S. Army BRL, Report No. 1216, 1963.
  4. Tobak, M. and Schiff, L. B., "Generalized Formulation of Nonlinear Pitch-Yaw-Roll Coupling," AIAA Journal, Vol. 13, No. 3, pp.323-332, 1975. https://doi.org/10.2514/3.49698
  5. Weinacht, P., "Navier-Stokes Predictions of the Individual Components of the Pitch-Damping Sum," Journal of Spacecraft and Rockets, Vol. 35, No. 5, pp. 598-605, 1998. https://doi.org/10.2514/2.3390
  6. Park, S. H., Kim, Y., Kwon, J. H., "Prediction of Dynamic Damping Coefficients Using Unsteady Dual-Time Stepping Method," 40th AIAA Aerospace Sciences Meeting, Reno, NV, 2002.
  7. Green, L., Spence, A. M., and Murphy, P. C., "Computational Methods for Dynamic Stability and Control Derivatives," AIAA Papers 2004-0015, 2004.
  8. Park, M. A. and Green L., "Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives," 18th AIAA Applied Aerodynamics Conference, Denver, Colorado, 2000.
  9. Beyers, M. E., "Direct Derivative Measurements in the Presence of Sting Plunging," AIAA Paper 84-2107, 1984.
  10. Fred, B. C., "Sting Interference Effects on the Static Dynamic, and Base Pressure Measurements of the Standard Dynamics Model Aircraft at Mach Numbers 0.3 through 1.3," AEDC-TR-81-3, 1981.
  11. Winchenbach, G. L., Uselton, B. L., Hathaway, W. H., and Chelekis, R. M., "Comparison of Free-Flight and Wind Tunnel Data for a Generic Fighter Configuration," AIAA Paper 82-1365, 1982.
  12. Murman, S. M., "A Reduced-Frequency Approach for Calculating Dynamic Derivatives," 43th AIAA Aerospace Science Meeting, Reno, NV, 2005.
  13. Ronch, A. D., Vallespin, D., Ghoreyshi, and Badcock, K. J., "Computation of Dynamic Derivatives Using CFD," 28th AIAA Applied Aerodynamics Conference, 2010.
  14. Merkle, C. L. and Athavale, M., "Time-Accurate Unsteady Incompressible Flow Algorithms Based on Artificial Compressibility," AIAA Paper 87-1137, Proceedings of AIAA 8th Computational Fluid Dynamics Conferenece, Honolulu, Hawaii, 1987.
  15. Sturek, W. B., Nietubicz, C. J., Sahu, J., and Weinacht, P., "Applications of Computational Fluid Dynamics to the Aerodynamics of Army Projectiles," Journal of Spacecraft and Rockets, Vol. 31, No. 2, 1994, pp. 186-199. https://doi.org/10.2514/3.26422
  16. Newman, D. M., "Measurement of Water Tunnel Model Dynamic Derivatives using a Force Balance Capable of Rotational Oscillation," Contractor Report 2005.003, V0.20, Quantitative Aeronautics, 2006.
  17. Limache, A.C., "Aerodynamic Modeling Using Computational Fluid Dynamics and Sensitivity Equations," Ph.D Thesis, Virginia Polytechnic Institute and State University, Blacksburg, 2000.
  18. Wiess, J. M. and Smith, W. A., "Preconditioning Applied to Variable and Constant Density Flows," AIAA Journal, Vol. 32, No. 11, 1995, pp. 2050-2057.
  19. Roe, R. L., "Approximate Riemann Solvers, Parameter Vector and Difference Scheme," Journal. of Computational Physics, Vol. 43, No. 2, 1981, pp.357. https://doi.org/10.1016/0021-9991(81)90128-5
  20. Van Leer, B., "Towards the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov's Method," Journal of Computational Physics, Vol. 32, 1979, pp.101-136. https://doi.org/10.1016/0021-9991(79)90145-1
  21. Beam, R. M. and Warming, R. F., "Implicit Numerical Methods for the Compressible Navier Stokes and Euler Equations," von Karman Institute for Fluid Dynamics Lecture Series, 1982-04, 1982.
  22. Nicolaides, J. D., and Bolz, R. E., "On the Pure Rolling Motion of Winged and/or Finned Missiles in Varying Supersonic Flight," J. Aeronaut, Sci., Vol. 8, pp. 160-168, 1953.
  23. Michael, E. B., "Determination of Static and Dynamic Stability Coefficients using Beggar," Master Thesis, Air Force Institute of Technology, Ohio, 2008.
  24. Shantz, I. and Graves, R. T., "Dynamic and Static Stability Measurements of the Basic Finner at Supersonic Speeds." NAVORD Report 4516, Sept, 1960.
  25. MacAllister, L. C., "The Aerodynamic Properties of a Simple Non-Rolling Finned Cone-Cylinder Configuration Between Mach number 1.0 and 2.5," BRL Report No. 934, 1955.
  26. Oktay, E. and Akaym H. U., "CFD Prediction of Dynamic Derivatives For Missiles," 40th AIAA Aerospace Sciences Meeting, Reno, NV, 2002.
  27. Murthy, H. S., "Subsonic and Transonic Roll Damping Measurements on Basic Finner," AIAA paper 82-4042, 1982.
  28. Moore, F. G. and Swanson, R. C., "Dynamic Derivatives for Missile Configurations to Mach Number Three," Journal of Spacecraft and Rockets, Vol. 15, No. 2, pp. 65-66, 1978. https://doi.org/10.2514/3.57289
  29. Huang, X. Z., "Wing and Fin Buffet on The Standard Dynamic Model," NATO RTO Report Number RTO-TR-26, pp. 361-381, 1981.
  30. Uselton, B. L., "A Description of the Standard Dynamic Model(SDM)," 56th Supersonic Tunnel Association Meeting.

Cited by

  1. Estimation of Longitudinal Dynamic Stability Derivatives for a Tailless Aircraft Using Dynamic Mesh Method vol.43, pp.3, 2015, https://doi.org/10.5139/JKSAS.2015.43.3.232