• Title/Summary/Keyword: 운동의 자유

Search Result 685, Processing Time 0.023 seconds

A Kinematics Approach to 3D Graphical Interface (3D 그래픽스 인터페이스에 대한 운동학적 접근)

  • Lee, Joo-Haeng;Jang, Tae-Ik;Kim, Myung-Soo;Kim, Mansoo;Chong, Kyung Taek;Lee, Ee Taek
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.2
    • /
    • pp.53-60
    • /
    • 1996
  • In 3D graphics interface, 3D objects and virtual camera have many degrees of freedom. We interpret the control of 3D objects and virtual camera as a problem of kinematics and inverse kinematics. It is well known that extra degrees of freedom introduce various singularities in inverse kinematics. In this paper, we approach 3D graphics interface problems by reducing redundant degrees of freedom so that the control degrees of freedom matches with the degrees of freedom in the motions of 3D objects and virtual camera.

  • PDF

FSI Analysis on a Floating Cylinder by 3D Flow-Structure Interaction (FSI) Measurement System (유동-구조상관(FSI) 3차원 측정시스템에 의한 부유식 실린더 연동운동해석)

  • Doh, D.H.;Sang, J.W.;Hwang, T.G.;Pyeon, Y.B.;Baek, T.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1574-1579
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flow-structure interactions(FSI) has been constructed and analyses on the flow field and the motion field of a floating cylinder was made. The three-dimensional vector fields around the cylinder are measured by 3D-PTV technique while the motion of the cylinder forced by the flow field is measured simultaneously with a newly developed motion tracking algorithm(bidirectional tracking algorithm). The cylinder is pendant in the working fluid of a water channel and the surface of the working fluid is forced sinusoidal to make the cylinder bounced. The interaction between the flow fields and the cylinder motion is examined quantitatively.

  • PDF

A Study on Rudder-Roll Stabilization System Design for Ship (방향타를 이용한 선박 횡동요 제어계 설계에 관한 연구)

  • Kim, Yeong-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.329-339
    • /
    • 2002
  • In ship operation the consequency of roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization control system design have been performed and very good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used to exclusively to stabilize the roll. This paper examines the two-degree-of-freedom servosystem design technique to synthesize the yaw control system which achieves the course keeping object of the ship and the H$_{\infty}$ control approach to suppress the roll motion, respectively.

Active Control of a Ship Cabin Motion Using 3-DOF Parallel Robots (3자유도 병렬 로붓을 이용한 선실 운동의 능동제어)

  • 배종국;심호석;이재원;주해호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.116-123
    • /
    • 2004
  • The demand for the stable and comfortable cabin of a high speed passenger ship is increasing. The study on shipboard comfort has been mainly concentrated on the motion control of a whole hull body. In this study, however, a new control system operated by two parallel robots (3RPS, 3SPR) such as the active suspension system of motor vehicle is proposed. The goal of this control is keeping zero velocity of the upper robot (cabin) although the lower robot (ship) is moving by the waves. Jacobian matrix was used to design the controller, From the simulation results, the remarkable reduction of motion of the cabin (upper platform) was observed. The 3SPR parallel robot shows better performance compared to the 3RPS robot.

Computer Simulation and Modeling of Cushioning Pneumatic Cylinder (공기압 실린더의 쿠션특성에 관한 모델링 및 컴퓨터 시뮬레이션)

  • 이상천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.794-805
    • /
    • 1999
  • Pneumatic cushioning cylinders are commonly employed for vibration and shock control. A mathematical simulation model of a double acting pneumatic cushioning cylinder designed to absorb shock loads is presented which is based on the following assumptions; ideal equation of state isentropic flow through a port conservation of mass polytropic thermodynamics single degree of freedom piston dynamics and energy equivalent linear damping. These differential equation can be solved through numerical integration using the fourth order Runge-Kutta method. An experimental study was conducted to validate the results obtained by the numerical integra-tion technique. Simulated results show good agreement with experimental data. The computer simulation model presented here has been extremely useful not only in understanding the has been extremely useful not only in understanding the basic cushioning but also in evaluating different designs.

  • PDF

A study on the hydrodynamic coefficients estimation of the 6-DOF model of an underwater vehicle with EKF (확장칼만필터를 이용한 수중운동체의 6자유도 운동을 위한 동유체력계수 추정에 관한 연구)

  • 전창완;박성택;이장규;이동권;최중락;양승윤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.766-771
    • /
    • 1992
  • The hydrodynamic coefficients estimation problem is important to develop an underwater vehicle and design a controller for it. In this paper, an identification theory, the Extended Kalman Filter, is applied to this parameter estimation problem. In the case that a process noise is not used, all of the parameters are almost exactly converged to the true values respectively. When a process noise is used, all of the parameters are converged to the true values, too, although some parameter estimates are slightly biased. The comparisons of the two trajectories between those generated by the true parameters and those by the estimated parameters show that the parameter estimation problem is well-solved.

  • PDF

Design and Tracking Control of 4-DOF Motion Platform for Bicycle Simulator (자전거 시뮬레이터용 4자유도 운동판의 설계 및 추적 제어)

  • 성지원;신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.235-240
    • /
    • 2001
  • A four degrees of freedom (dof) motion platform for bicycle simulator is developed. The motion platform, capable of the vertical linear and three angular motions, is designed based on analysis of the typical motion characteristics revealed by the existing six dof bicycle simulator. The platform essentially consists of two parts: the three dof parallel manipulator, consisting of a moving platform, a fixed base and three actuators, and the turntable to generate the yaw motion. The nonlinear kinematics and dynamics of the three dof parallel manipulator with multiple closed loop chains are analyzed for tracking control of the motion platform. The tracking performances of the three control schemes are experimentally compared: the computed torque method (CTM), the sliding mode control (SMC) and the PD control. The CTM and SMC, incorporated with the system dynamics model, are found to be equally better in performance than the PD controller, irrespective of the presence of external disturbance.

  • PDF

An Analysis of Rolling Performance for a Barge-Type FPSO (바아지형 FPSO의 횡운동 성능에 대한 해석)

  • Choi, Yoon-Rak;Kim, Jin-Ha;Kim, Young-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.25-30
    • /
    • 2005
  • To predict rolling performance for a barge-type FPSO, the evaluation of correct nonlinear roll damping is critical. The square section of FPSO causes a considerable viscous damping effect. Free roll decay tests were carried out to estimate nonlinear roll damping for a barge-type FPSO, under three different conditions. The roll motion RAO was deduced from model tests in the wave condition of the wideband spectrum. In numerical calculation, the quadratic damping was considered as equivalent linear damping, using the results of free roll decay test. Tested roll performance in the JONSWAP wave spectrum was compared with numerical results. These two results shaw good agreement, in spite of the proximity of peak wave period and roll natural period.

Numerical Analysis of Cavity Characteristics and Thrust for Supercavitating Underwater Vehicle (초공동 수중운동체 주위 공동 특성과 추력 전산 해석)

  • Kim, Dong-Hyun;Park, Warn-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • Cavitation is used in various fields. This study examined the drag reduction of an underwater vehicle using cavitation. In this study, the natural partial cavitation analysis results were verified using CFD code with the Navier-Stokes equation based on a mixture model. The momentum and continuity equations in the mixture phase were separately solved in the liquid and vapor phases. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The results of a computational analysis showed good agreement with the experiment. A computational analysis was also performed on the supercavity. The study investigated the cavity characteristics and drag of an underwater vehicle and studied the speed required to achieve a supercavity. Finally, a 1DOF analysis was carried out to investigate the thrust system for a supercavity. As a result, one of the methods for determining a suitable thrust system for a supercavitating underwater vehicle was presented.

A Study on the Expression of Space-Time Concept in Modern Architecture (근대건축에서 시공간개념의 표현특성에 관한 연구)

  • 최은희;박영순
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 1999.04a
    • /
    • pp.102-105
    • /
    • 1999
  • The purpose of this study is to analyze the meanings and expressional characteristics of space-time concept in modern architecture. As the architecture spaces reflect and represent the characteristics of times, the meaning and modern expression of space-time concept was studied in the developmental process of space concept on the base of the background of philosophy, science and psychology. At the late 19th century, space concept was changed with relative time-space in philosophy and science and the theory of visual perception. In the beginning of 20th century, space-time concept that combined space with time in the process of image open space expanded movement was developed. In modern architecture, it was expressed as the freedom of movement by open space expanded infinitely and/or abstract space without spacial measure, multiple view point by superimposed and/or polyhedric space and kinetic vision by dynamic and/or continuous space.

  • PDF