• Title/Summary/Keyword: 운동응답함수

Search Result 83, Processing Time 0.025 seconds

Wave Responses of Buoyant Flap-typed Storm Surge Barriers - Numerical Simulation (부유 플랩형 고조방파제의 파랑응답 - 수치모의)

  • Jeong, Shin-Taek;Ko, Dong-Hui;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.196-208
    • /
    • 2009
  • In this paper, wave responses of buoyant flap-typed storm surge barriers was studied numerically. Wave motions were modeled by using a linear potential wave theory, and behaviors of structures were represented as a Newton's 2nd law of motion. The near field region of the fluid was discretized as conventional quadratic iso-parametric elements, while the far field was modeled as infinite elements. Comparisons with the results from hydraulic model tests show that the present model gives good results. By using the model, the applicability of a buoyant flap-typed storm surge barrier in Masan bay was investigated considering field environmental conditions.

Identification of Structural Damages in a Plate Structure: An FRF-Based Method (FRF를 이용한 평판 구조물의 구조손상 규명기법)

  • Kim, Nam-In;Lee, U-Sik;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.204-212
    • /
    • 2001
  • In this study, an FRF-based structural damage identification method (SDIM) is proposed for plate structures. The present SDIM is derived from the partial differential equation of motion of the damaged plate, in with damages we characterized by using a damage distribution function. The appealing features of the present SDIM include the followings. First, the modal data of the damaged structure are not required. Secondly, a sufficient number of information can be generated from the measured FRFs by simply varying excitation frequencies and response measurement points. The feasibility of the present SDIM is verified through some numerically simulated damage identification tests.

  • PDF

Probability Based Risk Evaluation Techniques for the Small-Sized Sea Floater (소형 해상 부유체의 확률 기반 위기평가기법)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.795-801
    • /
    • 2012
  • This paper describes theoretical approach methodology for the Probability based risk Evaluation Techniques (PET) to monitor the risk levels of small-sized sea floater as like a yacht pier. The risk decision-making process by risk criteria with five-step scales is the core concepts of PET. These five-step scales are calculated from cumulative probability distribution of response functions for the sea floater motions using closed-form expressions. In addition, The risk decision-making process of PET with the risk criteria is proposed in this work. To verify the usability of PET, simulation experiments are carried out using mimic signals with the electrical specifications of ADIS16405 sensor that is to be use as measurement tool for the floater motions. As results from experiments, the risk evaluation error by PET shows 0.38 levels in maximum 5.0 levels. These results clearly shown that the proposed PET can be use as the monitoring techniques.

Wave Control Performance of Moored Pontoon-Type Floating Breakwater (계류된 사각형 부유식 방파제의 파랑제어성능)

  • Cho I. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.35-44
    • /
    • 2002
  • In this paper, the analytic studies on the wave control performance of moored pontoon-type floating breakwater are presented. A two-dimensional eigenfunction expansion method is adopted to study the motion responses and the transmission coefficients of pontoon-type floating breakwater in beam waves. The stiffness coefficients of mooring line are idealized as linear elastic spring. Comparison of the analytical results with a numerical results (FEM) shows good agreement over a wide range of frequencies. The performance of mooed pontoon-type floating breakwater is tested with various design parameters such as sectional geometry, mooring line characteristics and wave frequencies. It is found that the properly designed floating breakwater can be an effective wave control structure.

  • PDF

A Study on the Prediction of Ship's Roll Motion using Machine Learning-Based Surrogate Model (기계학습기반의 근사모델을 이용한 선박 횡동요 운동특성 예측에 관한 연구)

  • Kim, Young-Rong;Park, Jun-Bum;Moon, Serng-Bae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.41-42
    • /
    • 2018
  • This study is about the prediction of ship's roll motion characteristic which has been used for evaluating ship's seakeeping performance. In order to obtain the ship's roll RAO during voyage, this paper utilized machine learning-based surrogate model. By comparing the prediction result data of surrogate model with test data, we suggest the best approximation technique and data sampling interval of the surrogate model appropriate for predicting the ships' roll motion characteristic.

  • PDF

The Motion Response of an Oil Boom with Flexible Skirt (유연한 스커트를 가진 오일붐의 운동응답해석)

  • 성홍근;조일형;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.156-162
    • /
    • 1995
  • A numerical method for a 2-D oil boom model considering the flexibility of skirt has been developed The neater is assumed rigid and the skirt is tensioned membrane having a point mass at its end The fluid motion is potential. The kinematic condition which demands the continuity of the displacement is imposed at the joint between the floater and the skirt. The dynamic condition for the point mass is imposed at the bottom end of the skirt. The numerical method is based on the Green's function method in the frame of linear potential theory. It finds it's solution simultaneously from the total system of three equations, integral equation, the equation of motion of the floater and the equilibrium equation of the deformation of the skirt. Integral equation is derived by applying the Green's theorem to radiation potential and Green's function. Proper descretization of those three equations leads to the system of a linear algebraic equation. Due to the flexibility of skirt the motion of floater can be diminished in some range of wave frequency and furthermore the mechanism of resonance of the oil boom can be changed. The motion responses of various oil booms have been compared varying the length of the skirt and the point mass. The numerical method has been validated indirectly from the good correspondence between the motion responses of the flexible skirt model and the rigid skirt model in low frequency limit.

  • PDF

The Comparison of Seakeeping Performance Analysis Methods for a High Speed Catamaran (Strip and 3-D Panel Method) (초고속 쌍동선에 대한 내항성능 해석 방법 비교 (스트립 방법과 3-D Panel 방법))

  • Lee, Ho-Young;Song, Ki-Jong;Yum, Deuk-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.127-138
    • /
    • 1996
  • The strip method, unified theory and 3-D panel method are commonly used methods for the seakeeping analysis of high-speed vessels. The strip method which is basically 2-dimensional method is known to give incorrect hydrodynamic coefficients and motion responses for the cases of high speed and low frequency region. And the unified theory which uses two dimensional approach in inner domain and slender body theory in outer domain is very complicate in computational modelling. Though the 3-D panel method requires comparatively long computation time, it is believed that the method gives good results without any limitation in ship speed and range of frequency for computation. In the 3-D panel method the source singularity representing translating and pulsating Green function is used and Hoff's method is adopted for the numerical calculation of the Green function. The computation time can be reduced by using the symmetry relationship with respect to longitudinal axis. In this paper the strip method and the 3-D panel method are compared for the seakeeping analysis of a high-speed catamaran. The Compared items are the hydrodynamic coefficients, wave exciting forces, frequency response functions and short-term responses in irregular waves.

  • PDF

Nonstationary Response Analysis of Offshore Guyed Tower for Strong Earthquakes (비정상과정의 강한 지진에 대한 해양 가이드 타워의 동력학적 응답해석)

  • 류정선
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.127-137
    • /
    • 1992
  • A method for nonstationary response analysis of an offshore guyed tower subjected to earthquake loading is presented. The nonstationarity of the earthquake excitation is modeled by imposing a time varying envelope function onto a stationary random model. By taking the envelope function and the auto-correlation function of ground acceleration in terms of complex exponential functions of time, an analytical procedure is developed for computing time varying variances of the tower response. Example analysis indicates that the maximum responses estimated by considering nonstationary effect properly are significantly less than those obtained by the conventional frequency domain analysis method based upon the stationary assumption.

  • PDF

A Study on the Frequency Transfer Function of a Full-Scale Ship Considering the Multi-Directional Waves (다방향파를 고려한 실선 주파수 전달함수 도출기법 연구)

  • J.C. Kim;I.K. Park;H.J. Jo;J.A. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.51-57
    • /
    • 1994
  • In this study, the method for calculation of the frequency transfer function of motions based on the multi-directional waves in the analysis of a full-scale seakeeping trials is presented. For calculation of the frequency transfer function in the directional waves, Takezawa's inverse estimation method was introduced and the frequency ranges were divided into three parts in order to consider following seas. To confirm the validity of this method, the numerical simulation was executed. Those results show that analysis method of the multi-directional waves is more reliable than that of one directional waves, and confirm the possibility of applying this method to the full-scathe seakeeping trials.

  • PDF

Dynamic Stability and Response Analysis of Piping System with Internal Flow (내부에 유체가 흐르는 파이프계의 동적안정성 및 응답해석)

  • 이우식;박철희;홍성철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1861-1871
    • /
    • 1991
  • In this study, the piping system conveying unsteady flow is considered. The effects of coupling between the pipe motion and the velocity and pressure of fluid are included for the dynamic stability and response analysis of the piping system. The dynamic equations for a piping system are derived by Newtonian dynamics. For the momentum and continuity equations, the concept of moving control volume is applied. Thus, the governing equations derived herein are valid for the applications to the vibration problems occurred when a piping system starts up or shuts down and also when the valves and pumps operate. For a simply supported straight pipe, the stability analysis is conducted for various nondimensional parameters. The dynamic responses, in both stable and unstable region of stability chart, are numerically tested by the use of central difference method.