• Title/Summary/Keyword: 운동역학적 분석

Search Result 348, Processing Time 0.028 seconds

The Patterns of Students' Conceptual Changes on Force by Age (나이에 따른 학생들의 힘에 관한 개념 변화 특성)

  • Kim, Yeoun-Soo;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.2
    • /
    • pp.221-233
    • /
    • 2000
  • Many investigators have reported difficulties in changing the high school students' misconceptions on mechanics. By one possible solution to this problem, some researchers suggested that the students should be taught mechanics at a younger age to make conceptual changes possible. because as they get older they become less willing to change their ideas. The purpose of this study was to compare the patterns of students' conceptual changes on force by age, to find out whether older students were less ready to change their conceptions than younger students. Individual interviews were carried out with 35 students (average ages 13) in middle school class and 50 students (average ages 17) in high school class near by the middle school. Those students who held the misconcetpion that "motion-implies-force (Impetus conception)" were asked to read a student-centered refutational text (anomalous data). In the immediate and delayed posttest, the types of responses of the students were analyzed to find out the patterns of student's conceptual changes on force by age. In result, first, most of students had impetus conception. Some of the students aged 13 understood the force as terminologies related with everyday experiences, while the students aged 17 understood the force as scientific terminologies. Second, there was no evidence to suggest that conceptual change is more difficult for the students aged 17 than aged 13. Third, the students aged 13 showed diverse responses (plain acceptance, critical acceptance, plain rejection, critical rejection) to the refutational text, while the students aged 17 showed restricted responses (critical acceptance, critical rejection). A month later those students who showed the plain acceptance retrogressed unscientific conceptions, while those students who showed critical acceptance maintained scientific conceptions. We did not find out any evidence to suggest that conceptual change is more difficult for older students. These results need deeper investigation on the nature of the loss of plasticity in comparison with other important variables.

  • PDF

Numerical Analysis of Flowfield around Multicopter for the Analysis of Air Data Sensor Installation (대기자료센서 장착위치 분석을 위한 멀티콥터 주변 유동장 수치해석)

  • Park, Young Min;Lee, Chang Ho;Lee, Yung Gyo
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.20-27
    • /
    • 2017
  • The present paper describes the flow analysis of the flows around the multicopter for the selection of optimal position of air data sensor. For the flow analysis, the commercial fluid dynamics solver, STAR-CCM+ was used with polygon mesh and k-w SST turbulence modeling options. For the simulation of each rotating 4 propellers, unstructured overset mesh method was used. Hovering, forward flight, ascending and descending flight conditions are selected for the analysis and airspeed and flow angle errors were investigated using the CFD results. Through the flow field analysis, sensor location above one propeller diameter distance from the propeller rotating plane showed airspeed error less than 1m/s within the typical flight conditions of multicopter except descending.

The Change of High School Students' Mechanics Conceptions by the Types of Cognitive Conflict Situations (인지갈등 상황 제시유형에 따른 고등학생들의 역학 개념 변화)

  • Lee, Chae-Eun;Lee, Gyoung-Ho;Kim, Ji-Na;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.4
    • /
    • pp.697-709
    • /
    • 2001
  • Researchers on conceptual change have been proposed that confronting a cognitive conflict situation would be important for a student to change his/her preexisting conception. There have been reported that there are three different methods of producing a cognitive conflict situation; the first is logical argument(LC), the second is demonstration of an actual phenomenon(DC), and the third is kinesthetic conflict which is a kind of physical experience(EC). In this study, the researcher tried to find out the differences in the conceptual changes by the three different conflict situations. Seventy two high school students were chosen in a high school in Kyungkido, Korea. The students were tested four times; pretest, posttest, one week delayed posttest, and one month delayed posttest. Six different test situations on mechanics were developed for this study. Test item for each situation was developed. Each item consisted of a multiple choice question and explanation of the choice. The result showed a clear differences among the three conflict groups. In general, kinesthetic conflict which is a kind of physical experience(EC) was proved to be the most efficient strategy for the conceptual change; however, logical argument(LC) seemed to be the least efficient. However, the effectiveness was not uniform from situation to situation. Results of some items showed that even the LC was quite good for the conceptual change. Therefore, it seems to be important to develope appropriate method for the target concept.

  • PDF

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.

Investigation of Fatigue Damage of the Mooring Lines for Submerged Floating Tunnels Under Irregular Waves (불규칙 파랑 중 해중 터널 계류선의 단기 피로 손상 분석)

  • Kim, Seungjun;Won, Deok Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.49-60
    • /
    • 2017
  • As well as the strength check, fatigue life check is also mainly required for designing mooring lines of the floating structures. In general, forces which induce dynamic structural response significantly affect to fatigue design of the mooring lines. So, waves are mainly considered as the governing loading for fatigue design of the mooring lines. In this study, characteristics of the fatigue damage of the mooring lines for submerged floating tunnels (SFT) under irregular waves are investigated. For this study time domain hydrodynamic analysis is used to obtain motion of the tunnel and tension and stresses of the mooring lines under the specific environmental conditions. Also, the Rainflow-counting method, the Palmgren-Miner's rule, and S-N curves for floating offshore structures presented by DNV recommendation is applied to calculate the fatigue damage due to the fluctuating stresses. Referring to the design plactice of the tendon pipes for TLP (tension-leg platform), which is very similar structural system to SFT, it is assumed that a 100 year return period wave attacks the SFT systems during 48 hours and the fatigue damages due to the environmental loading are calculated. Following the analysis sequence, the effects of the tunnel draft, spacing and initial inclination angle of the mooring lines on the fatigue damage under the specific environmental loadings are investigated.

Analysis of Bed Change Caused by Hydraulic Structure Using 2-D model (수공구조물에 따른 2차원 모형을 이용한 하상변동 분석)

  • Son, Ah-Long;Son, In-Ho;Han, Kun-Yeun;Kwon, Taek-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.535-535
    • /
    • 2012
  • 하천 환경의 변화는 자연적으로 일어나기도 하지만, 우리나라 경우 대부분 하천 정비, 골재 채취, 수중보와 하구둑 등 하천시설물의 건설, 그리고 댐 및 교량건설 등 인위적인 요인에 의한 변화가 지배적이다 이렇게 환경이 변화하면 하천의 평형 상태는 파괴되며 하천의 평형 상태를 복원하는 과정에서 하천의 침식 또는 퇴적이 일어나며 이러한 과정의 총체적인 결과로서 하상변동이 일어나게 된다. 하상변동은 단기적인 면에서는 하천에서의 취수, 배수, 주운동 하천관리에 직접적인 영향을 주며, 장기적인 면에서는 하천시설물의 안정, 홍수위 및 지하수위 변화, 홍수터와 같은 하천부지의 변화 등 하천 및 유역 관리에 광범위한 영향을 주고 있다 하천의 유황 및 하상재료의 인위적인 변화에 의한 장기적인 하상변동 효과를 예측하고 분석하는 것은 하천계획 및 관리 면에서 매우 중요하다. 또한 하천 정비사업 등에 의한 영향을 제대로 평가하기 위해서는 비교적 단기간의 홍수 또는 호우 사상에 대한 단기적인 하상변동 효과를 정확하게 예측하는 것은 필수적이다. 외국에서는 하상변동 예측의 필요성을 일찍이 인식하여 다수의 하상변동 예측모형이 개발되어 하천 실무에 사용되고 있으며, 국내에서도 하천 흐름의 등수 역학적 해석을 위해 여러 가지 수치 기법들에 대한 연구가 진행되고 발전되어져 왔다. 현재 국내에서는 측량 자료이용과 모형적용의 용이성을 이유로 1차원 점변 부정류 해석프로그램인 HEC-RAS 모형을 많이 사용하고 있으며 대부분의 하천 정비 기본계획 수립에 있어서도 1차원 해석 모형을 적용하고 있는 실정이다. 국내에 서 수행된 하상변동 예측에 관한 연구들은 대부분 1차원 모형이므로 하천의 사행의 진행이나 유사의 횡방향 분포 등은 고려할 수 없다. 또한 하상변동 계산 시 이동상 부분의 전체가 균일하게 상승 또는 하향하는 것으로 가정하기 때문에 흐름이 급변하는 데 적용하는 것은 적합하지 않다. 따라서 본 연구에서는 4대강살리기 사업이 진행중인 낙동강유역 구미보지점을 대상으로 2차원 흐름 및 하상변동 수치모형인 CCHE2D 모형을 적용하여 50년, 100년, 200년 빈도별로 모의를 실시, 보설치 전 후의 하상변동을 비교 분석 하였다. 모의 결과 보설치 후의 경우 보 상류단은 전반적으로 퇴적의 양상을 보였으며, 보 하류단의 만곡부의 경우 홍수량이 증가함에 따라 유속 및 소류력이 비슷한 패턴으로 증가하여 침식이 관찰되었다. 특히 보 직하류의 경우 수문을 기준으로 다량의 침식이 있음을 보였으며, 침식이 계속 진행된다면 보유실과 같은 심각한 결과를 초래할 수 있기 때문에 침식을 방지 할 수 있는 다양한 장치가 마련되어야 할 것으로 판단된다.

  • PDF

Interpretation of Deformation History and Paleostress Based on Fracture Analysis Exposed in a Trench (트렌치에서의 단열분석을 통해 도출한 단열발달사 및 고응력 해석: 울산 신암리의 예)

  • Gwon, Sehyeon;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.33-49
    • /
    • 2016
  • The study area, located in Sinam-ri, Ulsan, in the southeastern part of the Korean Peninsula, is mainly composed of hornblende granite (ca. 65 Ma). Fracturing and reactivation of a fault striking ENE-WSW was strongly controlled by the intrusion of a mafic dyke (ca. 44 Ma), which behaves as a discontinuity in the mechanically homogeneous pluton, increasing the instability of the basement in this area. A geometric and kinematic study undertaken to interpret the faults and fractures was performed in a trench excavated almost perpendicular to the orientation of the dyke. The analysis of structural elements, such as dykes, veins, and faults, is used to infer the deformation history and to determine the paleostress orientations at the time of formation of the structures. The deformation history established based on this analysis is as follows: (1) NNE-SSW, E-W, ENE-WSW, and NE-SW trending fractures had already developed in the pluton before dyke intrusion; (2) felsic dykes intruded under conditions of σHmax oriented N-S and σHmin oriented E-W; (3) mafic dykes intruded under conditions of σHmax oriented E-W and σHmin oriented N-S; (4) dextral reactivation of the main fault associated with the development of hydrothermal quartz veins under conditions of σHmax oriented E-W and σHmin oriented N-S; (5) sinistral reactivation of the main fault and high-angle normal faults under conditions of σHmax oriented NE-SW and σHmin oriented NW-SE; and (6) dextral reactivation of the main fault and NE-SW low-angle reverse faults under conditions of σHmax oriented NW-SE and σHmin oriented NE-SW. These results are consistent with the tectonic history of the Pohang-Ulsan block in the southeastern part of the Korean Peninsula, and indicates the tectonic deformation of the southern area of the Ulsan fault bounded by Yangsan fault was analogous to that of the Pohang-Ulsan area from the Cenozoic. This work greatly aids the selection of sites for critical facilities to prevent potential earthquake hazards in this area.

Ground Reaction Force and Muscle activity in Children with Down Syndrome during Vertical Jump (다운증후군 아동의 수직점프 동작 수행 시 지면반력과 근육활동의 규명)

  • Yu, Yeon-Joo;Lim, Bee-Oh;Kim, Suk-Bum;Nam, Ki-Jung;Choi, Bum-Kwon;Kim, Min-Hoe
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.107-115
    • /
    • 2008
  • The purpose of this study was to investigate muscle activity and vertical ground reaction force(F) in children with Down syndrome(DS) during vertical jump. Six DS and one healthy child performed vertical jump. Four muscles(Biceps femoris, Rectus femoris, Tibialis anterior & Gastrocnemius) and F were analyzed. Gastrocnemius in DS showed lower muscle activity in a propulsive phase. Impulse during 0.3sec before toe-off in DS displayed lower value than that in the healthy child. The second peak of F in DS occurred later than that in the healthy child, so DS performed landing with their knee more flexed. The first and second peak of F and loading rate to the second peak of F in DS showed lower value than those in the healthy child. Therefore, DS might have lower ability to absorb the force while landing from a vertical jump.

Examination of the Flick-Flack Salto Backward Stretched of Success and Fall Occurs on the Balance Beam (평균대 백핸드 수완 동작 성.패 시 실수요인 규명)

  • So, Jae-Moo;Kim, Yoon-Ji;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • The purpose of this study is to examine the causes of errors from EGR posture on the balance beam, which is bending flick-flack salto backward stretched national team players through kinematic analysis, and present training methods for them so as to provide scientifically useful information to coaches and athlete. Findings from this study are summarized below. The most important factors that affect the errors in boyd center position and speed change were the speed change of left and right body centers and the horizontal and vertical speed changes. The left and right acceleration changes were greater in failed posture than in successful posture. The horizontal and vertical accelerations in E3 and E5 were the key factors that affected the backward somersault and landing. The angular speed changes which varied between success and failure were notable in head and shoulder joints. In individual results. The section when the angular speeds of head and shoulder joint must be the greatest was E4. In this section, when the body is extending instantly in a bent posture, increasing the angular speeds of head, shoulder and hip joints can improve the duration of staying in the air and the rotation radius of a somersault.

Numerical Estimation of Wind Loads on FLNG by Computational Fluid Dynamics (전산유체역학을 이용한 FLNG의 풍하중 추정에 관한 연구)

  • Sang-Eui, Lee
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.491-500
    • /
    • 2022
  • It has been noted that an accurate estimation of wind loads on offshore structures such as an FLNG (Liquefied Natural Gas Floating P roduction Storage Offloading Units, LNG FPSOs) with a large topside plays an important role in the safety design of hull and mooring system. Therefore, the present study aims to develop a computational model for estimating the wind load acting on an FLNG. In particular, it is the sequel to the previous research by the author. The numerical computation model in the present study was modified based on the previous research. Numerical analysis for estimating wind loads was performed in two conditions for an interval of wind direction (α), 15° over the range of 0° to 360°. One condition is uniform wind speed and the other is the NPD model reflecting the wind speed profile. At first, the effect of sand-grain roughness on the speed profile of the NPD model was studied. Based on the developed NPD model, mesh convergence tests were carried out for 3 wind headings, i.e. head, quartering, and beam. Finally, wind loads on 6-degrees of freedom were numerically estimated and compared by two boundary conditions, uniform speed, and the NPD model. In the present study, a commercial RANS-based viscous solver, STAR-CCM+ (ver. 17.02) was adopted. In summary, wind loads in surge and yaw from the wind speed profile boundary condition were increased by 20.35% and 34.27% at most. Particularly, the interval mean of sway (45° < α <135°, 225° < α < 315°) and roll (60° < α < 135°, 225° < α < 270°) increased by 15.60% and 10.89% against the uniform wind speed (10m/s) boundary condition.