• Title/Summary/Keyword: 우주공간

Search Result 540, Processing Time 0.037 seconds

Proof of SATCOM Antenna Heading Angle's Analytical Model (위성통신 안테나의 위성 지향각도 해석적 모델의 실증)

  • Cho, Gyuhan
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.75-82
    • /
    • 2019
  • A Satellite Communication (SATCOM), which is applied to various systems to communicate with other systems at the limited wired communication situation, is required to head at a stable point of the space, because this system uses a geostationary satellite. It is important to know satellite tracking heading angles such as elevation angle and azimuth angle for the immovable antenna's latitude, longitude, and altitude. Moreover, calculation of heading angle is critical for SATCOM antenna on a moving platform. In this study, a antenna heading angle calculation method is applied to compute elevation and azimuth angle for a SATCOM antenna and the heading angle simulation is executed for the Korea peninsula and surrounding areas. To verify this simulation, satellite tracking test is conducted using a SATCOM antenna which uses monopulse signal tracking method. The simulation is confirmed by comparing this test result with the simulation. And we make a suggestion for calculation of polarization angle of this antenna.

A Research about Digital Texture for Photo Realistic Computer Graphic (Photo Realistic Computer Graphic 제작에 따른 Digital Texture 구현)

  • Eum, Young-Sik;Kim, Ji-Hong;Kim, Cheeyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.647-650
    • /
    • 2009
  • In recent years, an understanding and concern about the Photo Realistic CG increased while the CG industry grew. The overall understanding of a system, an output and algorithm, and etc. are needed in order to implement the Photo Realistic CG. Moreover, for the realistic output on CG, the texture task that it is logical the various environment condition according to the physical environment and time, and etc.s has to show. For carrying out the Photo Realistic CG texture task, the extensity of a texture, the physical properties, a material, and an environment, the various access and the logical analysis are needed. Analyzed data reaches the direct affect to the final product for expressing. The realistic ancient history site, and the cultural inheritance and industrial product will be implemented with the ground of the research of the upper part in the imaginary realistic world.

  • PDF

Ground Station Antenna Pattern Design for Network-Based UAV Command and Control Communication Systems (네트워크 기반 무인기 제어 통신시스템을 위한 지상국 안테나 패턴 설계)

  • Kim, Kyung-Ho;Kim, Hee Wook;Jung, Young-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.384-389
    • /
    • 2021
  • An optimal ground station (GS) antenna pattern design method for network-based UAV command and control communication systems considering complexity and performance is presented. The GS antenna consists of multiple side sectors and one upward sector. The antenna gain for each vertical/horizontal angle of the GS antenna according to the change of antenna design parameters such as the number of sectors, horizontal and vertical beam-width, and tilt-angle is modeled, and the effect of the parameter changes on the signal-to-noise ratio (SNR) distribution in the virtual three-dimensional space is analyzed. It is observed that the tilt-angle of the side sectors has the greatest effect on the performance, and the longer the distance between GSs, the higher the maximum altitude and the smaller the number of side sectors, the tilt-angle should be lower. In addition, it is observed that the wider vertical beam-width of the side sector is advantageous in maximizing the lowest SNR, but narrow vertical beam-width is advantageous in maximizing the average SNR.

Disaster Assessment, Monitoring, and Prediction Using Remote Sensing and GIS (원격탐사를 이용한 재난 감시 및 예측과 GIS 분석)

  • Jung, Minyoung;Kim, Duk-jin;Sohn, Hong-Gyoo;Choi, Jinmu;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1341-1347
    • /
    • 2021
  • The need for an effective disaster management system has grown these days to protect public safety as the number of disasters causing massive damage increases. Since disaster-induced damage can develop in various ways, rapid and accurate countermeasures must be prepared soon after disasters occur. Numerous studies have continuously developed remote sensing and GIS (Geographic Information System)-based techniques for disaster monitoring and damage analysis. This special issue presents the research results on disaster prediction and monitoring based on various remote sensors on different platforms from ground to space and disaster management using GIS techniques. The developed techniques help manage various disasters such as storms, floods, and forest fires and can be combined to achieve an integrated and effective disaster management system.

Analysis of Worker Exposure Space according to Distribution of Electromagnetic Field of Generator (발전기의 전자기장 분포 특성에 따른 작업자 노출공간 분석)

  • Seong, Minyoung;Kim, Doo-Hyun;Kim, Seungtae
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.20-28
    • /
    • 2021
  • With an increase in the commercialization of electricity, and the development of advanced and large electric devices and various wireless radio wave services, concerns over the effects of electromagnetic fields on human health have increased. Accordingly, the World Health Organization encouraged the development of international standards by establishing the 'International Electromagnetic Fields Project' in 1996 based on studies on the harmful effects of electromagnetic fields on the human body. Moreover, the National Institute of Environmental Health Sciences (NIEHS) classified electromagnetic fields as possible carcinogens under Group 2B category, even though they have been found to have a weak correlation with those effects on human health. Mid-to-large-sized electric facilities used at industrial sites mostly adopt a commercial frequency of 60 Hz, and workers handling these facilities are exposed to such extremely low frequency (ELF) fields for a long time. A previous study suggested that exposure to ELF electromagnetic fields with frequency ranges from 0 to 300 Hz, even for a short time, at densities higher than 100 μT may have harmful effects on human body as it affects the activation of nerve cells in the central nervous system by inducing an electric field and current and stimulating muscles and the nervous system in the body. Such studies, however, focused on home appliances used by ordinary people, and research on facilities utilizing high-capacity current and operated by workers at industrial sites is lacking. Therefore, in this study, a 3000 kilowatt generator, which is a high-capacity electric facility employed at industrial sites, was investigated, and the size of the magnetic fields generated during its no-load and high-load operations per distance to produce a map was measured to reveal spots deemed hazardous according to domestic and international exposure standards. The findings of this study is expected to alleviate workers' anxiety about the harmful effects of magnetic fields on their body and to minimize the level of exposure during operations.

Soil moisture and agricultural drought index estimation based on synthetic aperture radar images for the next-generation water resources satellite application technology development (차세대 수자원위성 활용기술 개발을 위한 영상레이더 기반의 토양수분 및 농업적 가뭄지수 산정)

  • Seongjoon Kim;Jeehun Chung;Yonggwan Lee;Wonho Nam;Hyunhan Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.5-5
    • /
    • 2023
  • 제3차 우주개발 진흥 기본계획의 일환으로써 개발되는 차세대 중형위성 5호인 수자원위성은 수자원/수재해 감시 전용 위성으로 2025년 발사 예정이다. 수자원위성의 메인 센서인 C-band 영상레이더(Synthetic Aperture Radar, SAR)는 기상조건 및 주야 상관없이 지표면 관측이 가능한 센서로 급변하는 수재해 양상에 효과적으로 대응하기 위해 탑재된 센서이다. 본 연구사업은 차세대 수자원위성의 효과적 활용 방안 및 SAR 자료기반의 활용산출물 및 주제도 서비스를 위한 알고리즘 구조설계 및 표출시스템 시범개발을 목표로 하고 있으며, 홍수/가뭄/안전/환경모니터링을 주제로 수자원 및 원격탐사 분야의 다학제적 전문가들로 구성된 컨소시엄을 구성하여 추진하고 있다. 본 연구의 내용은 가뭄 모니터링을 위해 개발 중인 SAR 기반 토양수분과 농업적 가뭄지수 산정 알고리즘 개발 및 공간적 표출을 포함한다. 토양수분은 SAR 영상에서 지표피복별로 추출된 후방산란계수와 수문학적 개념의 융합을 통해 논/밭/산림에 대해 산정한다. 물리적 특성에 기반한 변화탐지모델을 활용해 토양수분량을 추출 후, 기계학습기법과 S C S - C N 방법에서 파생된 수문학적 개념 5일 선행강우량과 결합한 토양수분 산정 알고리즘을 개발하였다. 산정된 토양수분을 기반으로, 논 지역은 벼 재배에 따른 담수 시기를 고려한 토양의 포화/불포화상태, 밭 지역은 토양 종류에 따른 토양의 물리적 특성, 산림 지역은 수문학적 개념 및 식생지수를 활용하여 가뭄 판단 기준을 구축하고, 가뭄의 해갈 여부와 해갈되는 시점의 강우량을 산정 가능한 알고리즘을 개발하였다. 개발된 가뭄 모니터링 기법은 향후 고도화, 최적화 및 안정화를 통해 수자원위성의 핵심 활용기술로써 구현할 계획이다.

  • PDF

Analysis of spatial variation for evapotranspiration using ECOSTRESS satellite imagery (ECOSTRESS 위성영상을 이용한 증발산량 공간변동성 분석)

  • Jeon, Min-Gi;Nam, Won-Ho;Ok, Jung-Heun;Hwang, Seon-Ah;Hur, Seung-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.38-38
    • /
    • 2021
  • 전 세계적으로 기후변화의 영향으로 인해 수문·기상 등 다양한 분야에서 심각성이 야기되고 있으며, 가뭄, 집중호우, 태풍 등과 같은 자연재해의 발생빈도와 피해가 증가하고 있다. 우리나라의 경우 봄철 가뭄의 발생빈도가 증가하고 있으며, 발생지역이 확산되는 추세이다. 증발산량(evapotranspiration)은 기상학과 수문학에 주요한 농업기상 매개 변수로 다루어지며, 작물의 생육·성장에 필요한 물 수요 및 관개용수 산정에 필요한 인자로 가뭄 분석에 활용하는 중요 인자들 중 하나다. 증발산량 자료 구축에는 증발산계 (Lysimeter)를 이용하여 현장 데이터를 실측하는 방법과 구조화된 알고리즘을 통해 증발산량을 산출하는 방법으로 나누어진다. 우리나라의 경우 증발산계가 설치된 지역이 많지 않고 분포도 조밀하지 않으며, 기상, 식생, 토지 피복 등 다양한 요인들의 영향을 받는 증발산량의 특성상 실측 데이터를 구축하는 것은 현실적으로 어렵다. 이에 물수지 기법, 기상 변수 기반 추정 등 간접적인 방법을 통해 증발산량을 추정하는 연구가 일반적으로 진행되고 있다. 이에 본 연구에서는 미국항공우주국 (National Aeronautics and Space Administration, NASA) 제트 추진 연구소 (Jet Propulsion Laboratory, JPL)의 The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)에서 제공하는 위성영상 중 증발산량 데이터를 구축하였다. 구축한 ECOSTRESS 증발산량 적합성 확인을 위해, 청미천·설마천에서 제공하는 증발산량과 비교 및 검증을 실시하였으며, 시공간적 변동성 분석을 위해 통계적 방법을 이용하였다. 본 연구에서 도출된 증발산량의 시공간 변동성 결과를 통해 지역별 가뭄 분석의 기초자료로 활용될 수 있을 것으로 사료된다.

  • PDF

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

A Study on the Military Operation of Urban Air Mobility (UAM) (도심항공모빌리티(UAM)의 군사적 운용방안에 관한연구)

  • Kang-Il Seo;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.287-292
    • /
    • 2023
  • The U.S. National Aeronautics and Space Administration proposed a new concept of urban air mobility in the city's short-range air transport ecosystem in order to build a new low-altitude air, and the term uam is currently used worldwide. This paradigm is also being promoted by the Korean government with the goal of commercializing urban air transport services by 2025, and furthermore, the need to secure air maneuvers and transportation capacity is emerging due to the rapidly changing future operating environment and battlefield space. In other words, this study started to present the military necessity and military operation plan by introducing the 'Agility Prime' program of the US Air Force. 'Agility Prime' program was organized in order of background and concept of urban air mobility, development trend of Korean urban air mobility and analysis of the US Air Force's 'Agility Prime' program, and it is expected that this study will be followed by a follow-up study.

A Study on Extracting Boundary Data of Marine Fish Farms Based on Satellite Images (위성영상 기반 해양수산 양식장의 경계 데이터 추출)

  • Seong-hoon Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.877-883
    • /
    • 2023
  • For safe operation of ships and management of marine fisheries farms, the data set that extracts the boundaries of marine fisheries farms can provide information on obstacles in the vessel's navigation path in advance by examining whether it matches the fishing ground permit area. In addition, it can be used to determine whether fish farms are operating to compensate for damage caused by marine accidents, and the relevant local government can use it to manage fishing grounds. It is also highly utilized as basic data to identify obstacles for safe navigation of ships. In this study, Sentinel-2 satellite image data from the European Space Agency (ESA) was used to extract the boundaries of fish farms. From the video image, the fish farm's status data by cycle was divided into five zones: Busan-Ulsan area, Geoje-Changwon area, Goseong-Tongyeong area, and Namhae-Sacheon area. Through the image highlighting process, the farm boundary data and meta data were processed and extracted.