• Title/Summary/Keyword: 우스키 석불

Search Result 3, Processing Time 0.019 seconds

Deterioration Evaluation and Material Characteristics of the Usuki Stone Buddha Statues in Oita, Japan (일본 오이타현 우스키 마애불상군의 재질특성 및 손상도 평가)

  • Cho, Ji-Hyun;Lee, Chan-Hee;Kim, Ji-Young;Morii, Masayuki;Lee, Myeong-Seong;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 2012
  • The Usuki Stone Buddha Statues in Oita are consisted of 60 Buddhas which represent of Japan carved on the rock-cliff in the 12 to 14th centuries. The basement rock of the statues is dark gray welded lapilli tuff that containing the Aso-4 pyroclastic rock group. Deterioration maps for the Hoki I and the Furuzono Buddha Statues group show multi-directional fissures on the Cakra, and sheeting-off zone at the margin of uprising water. Deterioration rate of the Hoki I group was calculated fissure about 121 in number, 19% of sheeting-off zone and 51% of biological weathering in surface of area. And the Furuzono group was also evaluated as about 48 of fissures in number, 24% of sheeting-off zone and 41% biological weathering. The slope stability assessment results, the Hoki I developed discontinuous planes has possibility of planar, toppling and wedge failures in all caves. Ultrasonic velocity of the Aizen-myooh (basement rock) ranges from 1,520 to 2,794 (average 2,298m/s). And pedestal of Amita-yeorae which has been replaced by new fresh rock is measured as 3,242 to 4,141 (average 3,813m/s). Therefore, we establish of planing conservation treatment and reinforcement methods to fissure, cavity, sheeting-off zone in the Buddha surface.

Material Characteristics and Application Efficiency of Treatments for Usuki Stone Buddha Statues in Japan (일본 우스키 석불군의 재질특성과 보존처리제 적용 효과)

  • Lee, Myeong Seong;Lee, Jae Man;Lee, Sun Myung;Kim, Sa Dug;Morii, Masayuki
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.78-91
    • /
    • 2011
  • The Usuki Stone Buddha Statues in Japan are carved on mainly dark gray welded lapilli tuff accompanied by lenticular fiamme. This rock is composed of matrix which contains feldspar and opaque minerals with some phenocrysts of quartz and feldspar. The matrix is slight to highly welded. The statues have been weathered and weakened by salt and freezing of water. To enhance the mechanical properties of the rock, consolidants and water repellents were applied. The absorption ratio of the rock was highly decreased after the treatment of the water repellents, the consolidant OH 100, as well. Ultrasonic velocity revealed similarly higher values in the treated rock by KSE 300 and OH 100, compared to non-treated rock. KSE 300, especially, highly increased the Equotip surface hardness. All studied consolidants and water repellents were found to change the original color of the stone. SNL, specifically, resulted the significant change in color. In addition, KSE 300 were observed to improve resistance to weathering such as microcrack and fracture through freezing-thawing test after treatment.

Characteristics of Salt Weathering and Environmental Variation on the Usuki Stone Buddha Statues in Oita, Japan (일본 오이타현 우스키 마애불상군의 환경변화와 염풍화 특성)

  • Cho, Ji Hyun;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.677-685
    • /
    • 2020
  • The host rock of the Usuki Stone Buddha Statues is dark gray welded tuff involved the Aso-4 pyroclastic flow sediments. This Buddha Statues are processing chlorosis from rainfall flowing above and underground water which were urgently needed for conservation measurement. White precipitates, the main source of salt weathering, on the surface of the Buddha Statues are mainly consisted of thenardite, gypsum and dolomite. Extraction experiment result shows that thenardite was dissolved at the beginning of stirring and then redissolved after 4 hours, and gypsum was detected until stirring for 2 hours, and then dissolved after stirring for 4 hours. As a result of monitoring the microclimate environment for 11 months to determine the recrystallization environment of white precipitates, the phase transition between thenadite and mirabilite appears widely in spring, and is maintained in an aqueous solution due to high temperatures in summer and fall. In winter, mirabilite is shown the widest by decreasing temperature. Therefore we requires details monitoring for blocking water transfer port and solved humidity environment in shelter.