• Title/Summary/Keyword: 우라늄 전착물

Search Result 24, Processing Time 0.024 seconds

Study of the Formation of Eutectic Melt of Uranium and Thermal Analysis for the Salt Distillation of Uranium Deposits (우라늄 전착물의 염증류에 대한 우라늄 공정(共晶) 형성 및 열해석 연구)

  • Park, Sung-Bin;Cho, Dong-Wook;Hwang, Sung-Chan;Kang, Young-Ho;Park, Ki-Min;Jun, Wan-Gi;Kim, Jeong-Guk;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Uranium deposits from an electrorefining process contain about 30% salt. In order to recover pure uranium and transform it into an ingot, the salts have to be removed from the uranium deposits. Major process variables for the salt distillation process of the uranium deposits are hold temperature and vacuum pressure. Effects of the variables on the salt removal efficiency were studied in the previous study[1]. By applying the Hertz-Langmuir relation to the salt evaporation of the uranium deposits, the evaporation coefficients were obtained at the various conditions. The operational conditions for achieving above 99% salt removal were deduced. The salt distilled uranium deposits tend to form the eutectic melt with iron, nickel, chromium for structural material of salt evaporator. In this study, we investigated the hold temperature limitation in order to prevent the formation of the eutetic melt between urnaium and other metals. The reactions between the uranium metal and stainless steel were tested at various conditions. And for enhancing the evaporation rate of the salt and the efficient recovery of the distilled salt, the thermal analysis of the salt distiller was conducted by using commercial CFX software. From the thermal analysis, the effect of Ar gas flow on the evaporation of the salt was studied.

Uranium ingot casting method with Uranium deposit in a Pyroprocessing (사용후핵연료 파이로 공정 중 우라늄 전착물의 잉곳 제조 방법)

  • Lee, Yoon-Sang;Cho, Choon-Ho;Lee, Sung-Ho;Kim, Jeong-Guk;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.85-89
    • /
    • 2010
  • The uranium ingot casting process is one of the steps which consolidate uranium deposits produced by electrorefiner as an ingot form in a pryprocessing technique. This paper introduces new design concept of the ingot casting equipment and the performance test results of the lab-scale ingot casting equipment fabricated based on the design concept. Casting equipment produces the uranium ingot by pouring an uranium melt into a mold by tilting a melting crucible. Also it is equipped with a cup which is able to continuously feed uranium deposits into a melting crucible. The productivity could be significantly enhanced by introducing the continuous operation concept.

Electrorefining Characteristics of Uranium by Using a Graphite Cathode (흑연 전극을 이용한 우라늄 전해정련 특성)

  • Kang, Young-Ho;Lee, Jong-Hyeon;Hwang, Sung-Chan;Shim, Joon-Bo;Kim, Eung-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Electrorefining experiments were successfully carried out in LiCl-KCl eutectic molten salt with a graphite cathode. It was found that the formation of Uranium-Graphite intercalation compound(U-GIC) helped the self-scraping mechanism of the uranium dendrite and the efficiency of the electrorefiner increased due to an elimination of the stripping step. The contaminations of the uranium deposit by rare earth elements was negligible while about 300 ppm of carbon was observed. The carbon contamination is believed to be eliminated by further purification by yttrium reaction. The morphology characteristics of the recovered U deposit was compared to that of steel cathode. These are only qualitative preliminary experimental results, but we believe that further research on this type of activity change the direction of the electrorefining research on spent nuclear fuel.

  • PDF

반연속식 염 증류장치 개발

  • Gwon, Sang-Un;Jeong, Jae-Hu;Lee, Yeong-Sang;Gang, Han-Byeol;Gang, Deok-Yun;An, Do-Hui;Lee, Seong-Jae
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2016.05a
    • /
    • pp.61-62
    • /
    • 2016
  • 우라늄전착물의 염 증류공정은 pyroprocess의 bottle neck에 해당되며, 회분식으로 조업된다. 본 발명에서는 증류탑 전단계에 고액분리실을 설치하고, 증류탑 후단에 냉각실을 설치하여, 전착물 도가니가 고액분리조- 증류조- 냉각조를 순차적으로 통과하여 조업시간을 크게 단축할 수 있도록 하였다. 또 도가니가 고온에서 이동할 수 있도록 중간에 고온 밸브를 설치하여 도가니가 다음 단계로 이동하면 새로운 전착물 도가니가 도입되어 연속적으로 조업이 가능하여 처리 용량이 향상되도록 하였다. 이에 따라 단위 시간당 처리용량을 현저히 높일 수 있다.

  • PDF