• Title/Summary/Keyword: 용존성 인

Search Result 139, Processing Time 0.035 seconds

Temporal and Spatial Fluctuations of Coastal Water Quality and Effect of Small Tide Embankment in the Muan Peninsula of Korea (무안반도 연안수질의 시ㆍ공간적 변동과 소규모 방조제의 영향)

  • Lee Dae-In;Cho Hyeon-Seo;Lee Gyu-Hyung;Lee Moon-Ok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.24-36
    • /
    • 2003
  • In this study, we estimated the seasonal fluctuations of water quality and effect of small tide embankment in coastal water around the Muan Peninsula, which is located in the northern part of Mokpo city, and layer farming ground is spread around there. Some physical and chemical factors were analyzed to characterize water quality from Jan. to Oct. in 1994. The results were as follows: Dissolved oxygen was slightly under saturation in the almost areas of July, and in some bottom layer at ebb tide of October. Distribution of COD showed high values that over 2㎎/L in October and flood tide of April by the discharge of freshwater and resuspension of benthic sediment, which exceeded water quality criteria II. Maximum values of dissolved inorganic nitrogen ware appeared in surface layer during the flood tide of October, while minimum of that showed in surface layer in April. Concentration of dissolved inorganic phosphorus was higher at July than the others, which ranged from 0.24 to 2.08㎍-at/L. Mostly mean values of N/P ratio were lower than 16, it mean that nitrogen is more limiting nutrient than phosphorus for the growth of phytoplankton. The values of eutrophication index were in the range of 0.07~0.81. However, very high values due to increase of COD were estimated near the tide embankment and southern part in relation to tidal current in October. Water quality around tide embankment was suddenly changed worse within a short period after opening the water gate during the rainfall.

  • PDF

Evaluation of DOM Variations and Reduction Effects in Bioreation Artificial Wetland (생물반응 인공습지 내 DOM 변동 및 저감효과 평가)

  • Joo, Kwangjin;Lee, Jongjun;Kim, Tea-Kyung;Choi, Isong;Chang, Kwang-hyeon;Joo, Jinchul;Oh, Jongmin
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.582-594
    • /
    • 2018
  • In this study, the vertical and horizontal flow wetlands were combined in series to create conditions for flow in the exhalation and anaerobic state with the aim of monitoring the variability and reduction of dissolved organic matterin the bio-reactive artificial wetlands, and the performance assessment was conducted as acrylic reaction groups by designing artificial wetlands that filled the functionalresiduals. In case of artificial wetlands in vertical and horizontal planes, the concentration of dissolved oxygen (DO) in the reaction tank was measured as 2.7 mg/L in the vertical flow wetlands under exhalation, and N.D. in the horizontal flow artificial wetlands under anaerobic conditions. The test was carried out by changing the operation time to 140 min, 80 min, and 60 min. The test was conducted with the same natural operation time of 20 min depending on the operation time. All hours of operation were shown to be due to microbial activity. In 3D-EEM, it was found that the longer the driving time was taken, the more reduction the organic compounds in the areas of insoluble human resources, III and V. Further research on the mechanism analysis of future reduction effects is expected to be carried out, but the findings are expected to contribute to the development of technologies for reducing obfuscated substances using artificial wetlands in the future.

Study on monitoring and prediction for the red tide occurrence in the middle coastal area in the South Sea of Korea II. The relationship between the red tide occurrence and the oceanographic factors (원격탐사를 이용한 한국 남해 중부해역에서의 적조 예찰 연구 II. 적조발생과 해양인자간의 상관성 연구)

  • 윤홍주;남광우;조한근;변혜경
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.938-945
    • /
    • 2004
  • On the relationship between the red tide occurrence and the oceanographic factors in the middle coastal area in the South Sea of Korea, the favorable oceanographic conditions for the red tide formation are considered as follows; the calm weather increases sea water temperature in summer and early-fall which the red tide occurs frequently, and the heavy precipitation brings some riverine water to ween: low salinity, high suspended solid, low phosphorus and high nitrogen, respectively. We decided the potential areas in the coastal zones vulnerable to the red tide occurrence based on the limited factors controlling the growth of phytoplankton. By using GIS through the overlap for three subject figures (phosphorus, nitrogen and suspended solids), it was founded that the potential areas are the Yeosu∼Dolsan coast, the Gamak bay, the Namhae coast, the Narodo coast, the Goheung and Deukryang bay. This result has very well coincided to the results of the satellite and in-situ data.

Effect of turbidity current on organic carbon cycle in Daecheong reservoir (탁수가 대청호 유기탄소 순환에 미치는 영향)

  • Dong Min Kim;Se Woong Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.148-148
    • /
    • 2023
  • 산업 고도화로 인하여 복잡하고 다양한 유기물의 사용량이 증가하였으며, 공공수역 내 새로운 오염물질이 유입됨에 따라 생화학적 산소요구량(BOD) 중심의 수질평가에 한계를 나타내었다. 이후 난분해성 물질을 고려한 유기물관리 정책과 총량관리의 필요성이 제기되었고 국내 하천과 호소에서는 총 유기탄소(TOC)를 유기물 관리지표로 설정하였다. 그러나 부영양 하천과 호소에서 TOC는 외부 부하뿐만아니라 식물플랑크톤의 과잉성장에 의해 증가할 수 있는 항목이므로 TOC 관리정책 추진을 위해서는 유기물의 기원에 대한 파악이 필요하다. 한편, 우리나라와 같이 몬순 기후대에 속한 댐 저수지의 경우 강우시 유입하는 탁수에 의해 다량의 유기물과 인이 유입되기도 하지만 식물플랑크톤의 제한요인 중 광량에 많은 영향을 미친다. 식물플랑크톤의 광합성은 수체 내 유기탄소 내부생성에 매우 중요한 요소이나 점 단위의 실험적 방법을 활용한 유기탄소 순환 해석은 저수지의 시·공간적인 변동성을 고려하기에 한계가 있다. 본 연구의 목적은 금강 수계 최대 상수원인 대청호를 대상으로 3차원 수리-수질 모델을 적용하여 유기탄소 성분 별 유입과 유출, 내부생성 및 소멸량을 평가하고 탁수가 저수지에서의 유기탄소 순환에 미치는 영향을 분석하는데 있다. 유기탄소 물질수지 해석을 위해 AEM3D 모델을 사용하였으며 2018년을 대상으로 입력자료를 구축한 후 보정 및 검정을 수행하였다. 모델은 유기탄소를 입자성, 용존성, 그리고 난분해성과 생분해성으로 구분하여 모의하며 유기물질 성상별 실험결과를 이용하여 입력자료를 구축하였으며 유기탄소순환 해석을 위해 4가지의 탄소성분과 조류 세포 내 탄소의 질량 변화율을 계산하였다. 이를 위해 외부 유입·유출부하율, 수체 내 생성(일차생산, 재부상, 퇴적물과 수체 간 확산) 및 소멸률(POC 및 조류 침강, DOC 무기화, 탈질)을 고려하였으며 탁수의 영향을 분석하기 위해 탁수 포함여부 시나리오를 구성하고 유기탄소 생성 및 소멸기작별 변동성을 비교 분석하였다. 모델은 2018년의 물수지를 적절히 재현하였으며 저수지의 수온 및 탁도 성층구조를 잘 재현해내면서 전반적인 수질을 적절하게 모의하였다. 탁수를 고려하였을 시 연간 TOC 부하량 중 내부기원 부하량은 56% 수준이였으나 탁수를 배제한 경우 내부기원 부하량은 82%로 나타났다. 특히, 연평균 Chl-a 농도가 44~48% 차이가 발생하면서 1차생산량이 약 4배가량 증가하였다. 몬순지역에서의 탁수는 체류시간이 긴 성층 저수지에서 식물플랑크톤 성장제어에 큰 영향을 미쳤으며 전반적인 유기탄소 순환을 해석하는데 있어 매우 중요한 인자로 작용하였다.

  • PDF

Seasonal Variation of Water Quality in a Shallow Eutrophic Reservoir (얕은 부영양 저수지의 육수학적 특성-계절에 따른 수질변화)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.180-192
    • /
    • 2004
  • This study was carried out to assess the seasonal variation of water quality and the effect of pollutant loading from watershed in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004, Stable thermocline which was greater than $1^{\circ}C$ per meter of the water depth formed in May, and low DO concentration (< 2 mg $O_2\;L^{-1}$) was observed in the hypolimnion from May to September, 2003. The ratio of euphotic depth to mixing depth ($Z_{eu}/Z_{m}$) ranged 0.2 ${\sim}$ 1.1, and the depth of the mixed layer exceeded that of the photic layer during study period, except for May when $Z_{eu}$ and $Z_{m}$ were 4 and 4.3 m, respectively. Most of total nitrogen, ranged 1.1 ${\sim}$ 4.5 ${\mu}g\;N\;L^{-1}$, accounted for inorganic nitrogen (Avg, 58.7%), and sharp increase of $NH_3$-N Hand $NO_3$-N was evident during the spring season. TP concentration in the water column ranged 43.9 ${\sim}$ 126.5 ${\mu}g\;P\;L^{-1}$, and the most of TP in the water column accounted for POP (Avg. 80%). During the study period, DIP concentration in the water column was &;lt 10 ${\mu}g\;P\;L^{-1}$ except for July and August when DIP concentration in the hypolimnion was 22.3 and 56.7 ${\mu}g\;P\;L^{-1}$, respectively. Increase of Chl. a concentration observed in July (99 ${\mu}g\;L^{-1}$) and November 2003 (109 ${\mu}g\;L^{-1}$) when P loading through two inflows was high, and showed close relationship with TP concentration (r = 0.55, P< 0.008, n = 22). Mean Chl. a concentration ranged from 13.5 to 84.5 mg $L^{-1}$ in the water column, and the lowest and highest concentration was observed in February 2004 (13.5 ${\pm}$ 1.0 ${\mu}g\;L^{-1}$) and November 2003 (84.5 ${\pm}$29.0 ${\mu}g\;L^{-1}$), respectively. TP concentration in inflow water increased with discharge (r = 0.69, P< 0.001), 40.5% of annual total P loading introduced in 25 July when there was heavy rainfall. Annual total P loading from watershed was 159.0 kg P $yr^{-1}$, and that of DIP loading was 126.3 kg P $yr^{-1}$ (77.7% of TP loading. The loading of TN (5.0ton yr-1) was 30 times higher than that of TP loading (159.0 kg P yr-1), and the 78% of TN was in the form of non-organic nitrogen, 3.9 ton $yr^{-1}$ in mass. P loading in Shingu reservoir was 1.6 g ${\cdot}$ $m^{-2}$ ${\cdot}$ $yr^{-1}$, which passed the excessive critical loading of Vollenweider-OECD critical loading model. The results of this study indicated that P loading from watershed was the major factor to cause eutrophication and temporal variation of water quality in Shingu reservoir Decrease by 71% in TP loading (159 kg $yr^{-1}$) is necessary for the improvement of mesotrophic level. The management of sediment where tine anaerobic condition was evident in summer, thus, the possibility of P release that can be utilized by existing algae, may also be considered.

Effect of Fouling Reducing Additives on Membrane Filtration Resistance of Activated Sludge (막오염 감소제가 활성슬러지의 여과저항에 미치는 영향)

  • Chung, Tai Hak;Lee, Jong Hoon;Kim, Hyoung Gun;Bae, Young Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.406-413
    • /
    • 2012
  • Effect of three additives, chitosan, ferric chloride, and MPE50 on membrane fouling reduction was studied. They were introduced with various dosing rate into activated sludge, and changes in filtration resistance measured by the batch cell filtration test were evaluated. Both the filtration resistance and the specific cake resistance were minimized at 20 mg/g-MLSS with chitosan, 70 mg/g-MLSS with ferric chloride, and 20 mg/g-MLSS with MPE50 addition, respectively. Introduction of the additives into the activated sludge resulted in reduction of not only cake resistance, but also fouling resistance. However, the chitosan addition to three different activated sludge resulted in three different optimal dose of 10, 20, 30 mg/g-MLSS, respectively. This implies that the optimal dose is dependent on sludge characteristics rather than a constant value. Overdose above the optimal dosage always aggravated filterability in all cases. Zeta potential of sludge flocs, relative hydrophobicity, floc size distribution, soluble EPS concentration and supernatant turbidity were measured in order to analyze fouling reduction mechanism. Nearly neutral surface charge along with the largest particle size was observed at the optimal dose. This could be explained by particle destabilization and restabilization mechanism as positively charged additives were injected into sludge flocs of negative surface charge. Both soluble EPS concentration and supernatant turbidity also showed the lowest value at the optimal dose. These foulants are believed to be coagulated and entrapped in sludge flocs during flocculation. Chitosan and MPE50 which are cationic polymeric substances showed higher reduction in both soluble EPS and fine particles comparing with ferric chloride.

Changes of the Nutrients and Water Trophic States in Upo Wetland (우포늪의 영양염과 수질 영양 상태 변화)

  • Lee, Jung-Joon;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.418-427
    • /
    • 2010
  • In the four swamps of Jjokjibeol, Mokpo, Upo and Sajipo in the Upo wetland, the nitrogen nutrients, phosphorus nutrients and chl-$\alpha$ had been observed during the period from April 2005 to December 2009 on monthly basis. Based on the results, the fluctuations of trophic state in the Upo wetland were estimated. Measurements of the nitrogen nutrients such as $NO_3$-N, $NH_3$-N and T-N showed to be generally decreased in comparison with those in the precent studies. Yet the T-N was still considerably higher than the general concentration level of eutrophication and algal blooming. $PO_4$-P and T-P showed to have reduced considerably in comparison to precedent studies. However, T-P also turned out to be dissolved over the nutrient standard. Nitrogen nutrients and phosphorus nutrients were the lowest in Jjokjibeol in the Upo wetland. The chl-$\alpha$ concentrations were the highest at summer periods in Jjokjibeol and Mokpo. However, the highest at non-summer periods in Upo and Sajipo. Among the four swamps, Upo had the highest density on average of chl-$\alpha$, and Mokpo the lowest. Through TRIX (Trophic Index) analysis evaluating trophic state of the Upo wetland, all four swamps were estimated of poor water quality (eutrophication).

Application of Lime Stone, Sand, and Zeolite as Reactive Capping Materials for Marine Sediments Contaminated with Organic Matters and Nutrients (유기물 및 영양염류로 오염된 해양퇴적물 정화를 위한 석회석, 모래, 제올라이트의 반응성 피복 소재로서 적용성 평가)

  • Kang, Ku;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.470-477
    • /
    • 2017
  • In this study, the applicability of calcite, sand, and zeolite for the remediation of sediments contaminated with organics and nutrients were investigated. Sediments and seawater for water tank experiments were sampled from Pyeongtaek harbor, and 1 cm or 3 cm of calcite, sand, and zeolite were capped on the sampled sediments. pH, electric conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored for 63 days. The sampled sediments were highly contaminated with organic matter and total nitrogen. DO in uncapped condition was exhausted within 10 days but DO in capping condition except 3 cm of zeolite capping was prolonged above 2 mg/L. Capping efficiency for interrupting COD release from sediments was in the following order: zeolite 1 cm > calcite 1 cm > calcite 3 cm > sand 3 cm ${\cong}$ zeolite 3 cm ${\cong}$ sand 1 cm. Zeolite was found to be effective for interrupting nitrogen release. T-P was not observed in both uncapped and capped sediment, i.e., all experimental conditions. It can be concluded that zeolite can be effectively used for the remediation of sediments highly contaminated with organic matter and nitrogen.

Photoalteration in Biodegradability and Chemical Compositions of Algae- derived Dissolved Organic Matter (자외선에 의한 조류기원 용존유기물의 생분해도 및 화학조성변환.)

  • Imai, Akio;Matsushige, Kazuo;Nagai, Takashi;Kim, Yong-Hwan;Kim, Bom-Chul;Choi, Kwang-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.235-241
    • /
    • 2003
  • The effect of ultraviolet (UV) radiation on the characteristics of algae-derived dissolved organic matter (DOM) was examined by comparing the biodegradability and DOM fraction distribution of algal DOM before and after UV exposure. Algal DOM from two axenic cultures of Microcystis aeruginosa and Oscillatoria agardhii were irradiated for 24 h at a UV intensity of 42 W/$m^2$. A complete degradation of algal DOM during the UV exposure did not occur, remaining at constant concentrations of dissolved organic carbon(DOC). After UV exposure, however, microbial degradations were reduced by 17% in M. aeruginosa and 53% in O. agardhii, respectively, and decomposition rates also were two times lower in UV exposed algal DOM. In addition, the chemical compositions of algal DOM altered substantially after UV radiation exposure. The proportions of hydrophilic bases (HiB; protein-like DOM) decreased considerably in both algal DOM sources after UV exposure (16.8% and 20.0% of DOM, respectively), whereas those of hydrophilic acids (HiA; carboxylic acids-like DOM) increased as much as the decrease of the HiB fraction. Capillary ion electrophoresis (CE) analysis showed that several carboxylic acids increased significantly after UV exposure, further confirming an increase in HiA fractions. The results of this study clearly indicate that algal DOM can be changed in its chemical composition as well as biodegradability without complete degradation by UV radiation.

Analysis of water surface spectral characteristics for Chlorophyll-a estimation in Baekje weir upstream reach and Namyang lake using Drone and Sentinel-2 (백제보 상류하천구간과 남양 간척담수호내의 Chlorophyll-a 산정을 위한 Drone 및 Sentinel-2 수체분광특성 분석)

  • Jang, Wonjin;Kim, Jinuk;Lee, Yonggwan;Park, Yongeun;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.27-27
    • /
    • 2022
  • 본 연구는 본 연구에서는 내륙에 위치한 하천(백제보)과 호소(남양호)를 대상으로 수체반사도를 활용하여 유역특성에 따른 반사도의 변화를 확인하고 Chlorophyll-a(Chl-a)의 농도를 추정하고자 하였다. 각 유역별 특성분석을 위해 제원자료, 토지피복도 및 11개(수소이온농도, 용존산소, BOD, COD, 부유물질, 총질소, 총인, 수온, 전기전도도 및 Chlorophyll-a)의 수질인자 자료를 구축하였다. 백제보는 2016-2017년 유인항공기에 탑재된 초분광센서를 이용하여 반사도를 측정하였고, 남양호는 2020-2021년 초분광센서가 탑재된 Drone과 Sentinel-2 MSI영상으로부터 반사도를 측정하였으며 두 유역 모두 촬영 범위에 대하여 현장샘플링을 실시하였다. 유역특성, 수질인자간 상관성 및 밴드별 상관성 분석을 실시하였다. 수질인자 간 상관성 분석 결과 Chl-a와 광학적 특징이 있는 SS, TOC가 상관성이 높게 나타났으며, 반사도의 경우 Chl-a가 고농도일수록 Near-Infrared, Blue 파장과 상관성이 높게 나타났다. 해당 분석결과를 기반으로 각 유역에 대해 Chl-a Machine-learning 기법과 원격탐사자료를 이용하여 Chl-a의 농도를 산정하였으며 백제보, 남양호 각각 결정계수(R2) 0.80, 0.88의 성능을 보였다. 추후 고해상도 광학위성영상을 통해 유역특성을 고려한 광범위한 지역 규모의 Chl-a의 시공간적 분석이 가능할 것으로 판단된다.

  • PDF