• Title/Summary/Keyword: 용접 공정

Search Result 728, Processing Time 0.027 seconds

A Study on Factors Affecting Airborne Fume Composition and Concentration in Welding Process (용접공정에서 발생된 공기중 흄의 조성과 농도에 영향을 미치는 요인에 관한 연구)

  • Shin, Yong Chul;Yi, Gwang Yong;Park, Seung Hyun;Lee, Na Roo;Jeong, Jee Yeon;Park, Jung Keun;Oh, Se Min;Moon, Young Hahn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.181-195
    • /
    • 1997
  • The purpose of this study was to investigate factors affecting the composition and concentrations of fumes generated from various types of welding processes. The results are as follows. 1. Iron(Fe), zinc(Zn) and manganese(Mn) were predominant in Welding fumes. The Fe content in total fumes was 25.5% in coated electrode and 28.2% in $CO_2$ are welding, and the Zn content was 4.5% and 9.1%, respectively, and the Mn was 3.6% and 7.8%, respectively. 2. It was found that the important factors determining composition and concentration of fumes were type of industries, type of welding processes, type and composition of electrodes, composition of base metals, confinement of workplaces or condition of ventilation, work intensity, coated metals such as lead and Zn in paint. 3. The Mn content in airborne fumes was highly correlated with that of electrode(r=0.77, p<0.01) and was about 4 times higher than that in electrodes or base metals. The results lindicate that Mn is well evaporated into air during welding. The higher vapor pressure of Mn may explain this phenomenon. 4. the airborne total fume concentrations were significantly different among types of industries(p<0.001). The airborne total fume concentration was higher in order of sleel-structure manufacturing($GM=15.1mg/m^3$), shipbuilding($GM=13.2mg/m^3$), automobile-component manufacturing ($GM=7.8mg/m^3$) and automobile assembling industry($GM=3.0mg/m^3$) 5. The airbone total fume concentration was 6 times higher in $CO_2$ welding than in coated electrode welding, and approximately 3 times higher in confined area than in open area, in steel-structure manufacturing industry. 6. The concentration of welding fume outside welding helmet was about 2 times higher than that inside it. It is recommened that air sampling be done inside helmet to evaulate worker's exposure accurately, for it has an outstanding effect on reducing worker exposure to fumes and other contaminants.

  • PDF

Study on Laser Cladding of Heat Resisting Steel Using EuTroLoy 16006 Powder(II) - Characteristics of Alloying Elements Distribution of Multi Pass Clad Layer - (EuTroLoy 16006 분말을 이용한 내열강의 레이저 클래딩에 관한 연구(II) - 멀티패스 클래드 층의 합금 성분 분포 특성 -)

  • Kim, Jong Do;Lee, Eun Jin;Kim, Cheol Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.307-312
    • /
    • 2017
  • Laser cladding has some advantages compared to conventional cladding technologies such as arc welding and thermal spraying. Laser cladding produces a metallurgically well-bonded clad layer with a lower dilution ratio and few defects. Based on the characteristics of a 1-pass clad layer with many parameters, which were investigated in a previous report, it was found that it was essential to overlap a 1-pass clad layer when cladding a large area. In this study, the shape differences of multi-pass clad layers with various overlapping ratios were compared. Then, the alloying element distribution of cladding with a certain overlapping ratio was investigated using EDS and EPMA. As the overlapping ratio increased, the length of the clad decreased and its height increased. In addition, the height of the multi-pass cladding was higher than that of the 1-pass cladding under the same condition. The Fe content of the highly diluted first clad was found to be approximately 20 % in an element analysis. However in the area outside of the first clad, the Fe content was decreased to 10 % as a result of minimum dilution, and a uniform distribution of elements was found.

Development of Pre-Service and In-Service Information Management System (iSIMS) (원전 가동전/중 검사정보관리 시스템 개발)

  • Yoo, H.J.;Choi, S.N.;Kim, H.N.;Kim, Y.H.;Yang, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.390-395
    • /
    • 2004
  • The iSTMS is a web-based integrated information system supporting Pre-Service and In-Service Inspection(PSI/ISI) processes for the nuclear power plants of KHNP(Korea Hydro & Nuclear Power Co. Ltd.). The system provides a full spectrum coverage of the inspection processes from the planning stage to the final report of examination in accordance with applicable codes, standards, and regulatory requirements. The major functions of the system includes the inspection planning, examination, reporting, project control and status reporting, resource management as well as objects search and navigation. The system also provides two dimensional or three dimensional visualization interface to identify the location and geometry of components and weld areas subject to examination in collaboration with database applications. The iSIMS is implemented with commercial software packages such as database management system, 2-D and 3-D visualization tool, etc., which provide open, updated and verified foundations. This paper describes the key functions and the technologies for the implementation of the iSIMS.

An Experimental Study on the Structural Performance of Lateral Resistance in Steel Elevator Pit (강재엘리베이터 피트 측압저항 구조성능에 관한 실험적 연구)

  • Hong, Seong-Uk;Kim, Tae-Soo;Baek, Ki-Youl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • Steel elevator pit was developed for the purpose of minimizing the excavation, simplifying the construction of the frame and economical efficiency by improving the problems that occurred in the existing reinforced concrete. It is common to apply conventional RC method through excavation to underground structures such as underground floor collector well and elevator pit. In recent years, the use of steel collector well and steel elevator pits to reduce construction costs by minimizing the materials of steel and concrete has been continuously increasing. The steel elevator pit is an underground structure and then the performance of the welding part and the structure system is important. Specimen with only steel plate and concrete without studs could support the load more than 3 times than the specimen with deck only. Therefore, even if there is no stud, the deck (steel plate) rib is formed and the effect of restraining the steel plate and the concrete during the bending action can be expected. However, since sudden fracture in the elevator pit may occur, stud bolt arrangement is necessary for the composite effect of steel plate and concrete. It is expected that the bending strength can be expected to increase by about 15% or more depending with and without stud bolts.

Structural Analysis and Design of B-pillar Reinforcement using Composite Materials (복합소재를 활용한 B필러 강화재의 구조해석 및 설계)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Kim, Ji Wook;Yang, Min Seok;Gu, Yoon Sik;Ahn, Tae Min;Kwon, Sun Deok;Lee, Jae Wook
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.35-46
    • /
    • 2021
  • This paper aims to reduce weight by replacing the reinforcements of the B-pillar used in vehicles with CFRP(Carbon Fiber Reinforced Plastics) and GFRP(Glass Fiber Reinforced Plastics) from the existing steel materials. For this, it is necessary to secure structural stability that can replace the existing B-pillar while reducing the weight. Existing B-pillar are composed of steel reinforcements of various shapes, including a steel outer. Among these steel reinforcements, two steel reinforcements are to be replaced with composite materials. Each steel reinforcement is manufactured separately and bonded to the B-pillar outer by welding. However, the composite reinforcements presented in this paper are manufactured at once through compression and injection processes using patch-type CFRP and rib-structured GFRP. CFRP is attached to the high-strength part of the B-pillar to resist side loads, and the GFRP ribs are designed to resist torsion and side loads through a topology optimization technique. Through structural analysis, the designed composite B-pillar was compared with the existing B-pillar, and the weight reduction ratio was calculated.

Greenhouse Gas Reduction and Marine Steel Plate Tensile Properties When Using Propylene Flame in the Cutting Process (프로필렌 화염을 이용한 선박용 철판 가공 시 온실가스 감소 효과 및 재료의 인장 특성에 미치는 영향 연구)

  • Kim, Do Hyeon;Kim, Dong Uk;Seo, Hyoung-Seock
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.639-647
    • /
    • 2022
  • The use of flames is essential in cutting, bending, and welding steel during a ship's construction process. While acetylene fuel is commonly used in steel cutting and the manufacturing process in shipyards, the use of propane as an alternative fuel has recently been increasing, due to the lower risk of explosion and propane's relatively low calorific value. However, propane fuel has a relatively slow processing speed and high slag generation frequency, thereby resulting in poor quality. Propylene is another alternative fuel, which has an excellent calorific value. It is expected to gain wider use because of its potential to improve the quality, productivity, and efficiency of steel processing. In this study, the combustion characteristics of propane and propylene fuel during steel plate processing were analyzed and compared. The reduction of greenhouse gases and other harmful gases when using propylene flame was experimentally verified by analyzing the gases emitted during the process. Heat distribution and tensile tests were also performed to investigate the effects of heat input, according to processing fuel used, on the mechanical strength of the marine steel. The results showed that when propylene was used, the temperature was more evenly distributed than when propane fuel was used. Moreover, the mechanical tests showed that when using propylene, there was no decrease in tensile strength, but the strain showed a tendency to decrease. Based on the study results, it is recommended that propylene be used in steel processing and the cutting process in actual shipyards in the future. Additionally, more analysis and supplementary research should be conducted on problems that may occur.

A Study on the Suitability Analysis of Welding Robot System for Replacement of Manual Welding in Ship Manufacturing Process (선박 제조 공정 분야에서 수용접 대체를 위한 용접 로봇 시스템 도입의 적합성 분석 연구)

  • Kwon, Yong-Seop;Park, Chang-Hyung;Park, Sang-Hyun;Lee, Jeong-Jae;Lee, Jae-Youl
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.799-810
    • /
    • 2022
  • Welding work is a production work method widely used throughout the industry, and various types of welding technologies exist. In addition, many methods are being studied to automate these welding operations using robots, but in the ship manufacturing field, welding such as painting, cutting, and grinding is also the most common operation, but the manual operation ratio is higher than in other industries. Such a high manual labor ratio in the field of ship manufacturing not only causes quality problems and production delays according to the skill of workers, but also causes problems in the supply and demand of manpower. Therefore, this paper analyzed the reason why the automation rate is low in welding work at ship manufacturing sites compared to other industries, and analyzed the production process and field environment for small and medium-sized ship manufacturing companies that repeatedly manufactured with a small quantity production method. Based on the analysis results, it is intended to propose a robot system that can easily move between workplaces and secure uniform welding quality and productivity by collaborating simple welding tasks with humans. Finally, the simulation environment is constructed and analyzed to secure the suitability of robot system application to current production site environment, work process, and productivity, rather than to develop and apply the proposed robot system. Through such pre-simulation and robot system suitability analysis, it is expected to reduce trial and error that may occur in actual field installation and operation, and to improve the possibility of robot application and positive perception of robot system at ship manufacturing sites.

Evaluation of Steel Tube Connection in Precast Concrete Double Wall System (프리캐스트 콘크리트 더블월 시스템의 각형 강관 연결부 성능평가 )

  • Yujae Seo;Hyunjin Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2023
  • In this study, a double wall system is introduced, which was invented to simplify the complicated manufacturing process of the existing precast concrete (PC) double wall systems and to remove defects such as laitance that may occur during the production of concrete panels. An experimental study was conducted to investigate the tensile resisting capacity of the steel tube which is embedded in the precast concrete panel to keep the spacing between PC panels and to prevent damage of the PC panels during transportation and casting concrete onsite. The experiment was planned to determine the detail of effective steel tube connection considering the steel plate treatment method according to the formation of the opening, the presence of embedded concrete, and the reinforcement welding for additional dowel action as key variables. As a result, the ultimate tensile strength increased by 20-30% compared to the control specimen (ST) except for the steel tube specimen (ST_CP) which has steel plates bent inward at the end part of the steel tube. Since the specimen (ST_CON) filled with concrete inside the control specimen has no additional process and cost for the steel tube connections compared to the control specimen during the production of the developed double wall system, it is determined to be the appropriate detail of steel tube connection.