• Title/Summary/Keyword: 용접부 형상

Search Result 251, Processing Time 0.022 seconds

A Study on Application of Corrugated Invar Strake Edge in the Membrane Cargo Containment of LNG Carriers (LNG선 화물격납용기 Invar strake edge 이음부 형상 개선에 관한 연구)

  • Han, Jong-Man
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.74-80
    • /
    • 2009
  • The membrane of the LNG carriers consists of thin strips of INVAR(Fe-36%Ni) steel plates, and the junction between INVAR strips is fabricated by welding. Thousands of the raised edge joints, regularly spaced, are located around all the side of the tank corner near the transverse bulkhead, and TIG welding is manually made on the top of the raised edges. Since the thickness of all the laminated edge plies is extremely thin and the weld position is under a bad accessibility, highly skilled workers are required to perform welding relatively for a long welding time. An alternative scheme for the corner membrane fabrication is proposed in the study to improve the installation workability and thus productivity. The scheme replaces the welded edges with the preformed corrugation ones. A panel strip with regularly-spaced corrugations is installed at the corner instead of the individual flat strip of which edge is vertically raised to be welded with the adjacent strip. In the study, a series of the evaluation on the corrugated edge members was performed to assess the applicability to the real LNG carrier fabrication. Opening displacement at the raised edge was experimentally examined. Elastic stiffness regressed from the displacement was nearly same in both edge types. Edge displacement and local stresses were calculated under hydrostatic pressure and temperature change due to liquefied cargo. Fatigue test was performed on both corrugated and welded edge specimens consisting of two or five plies of invar strips. Fatigue strength of the corrugated specimens was not less than that of the welded specimens.

The Structural Characteristics of Non-slip Device in Connecting Method Between Steel Pipe Pile and Footing (미끌림 방지턱을 이용한 강관말뚝 머리 결합부의 구조특성에 관한 실험적 연구)

  • 박영호;김낙영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.227-243
    • /
    • 2003
  • To find the structural characteristics of non-slip device in connecting method B between steel pipe pile and concrete footing, compression and uplift test was performed for full sized specimens not having non-slip device, those having non-slip device with two curved steel plate bars welded inside the steel pipe pile(standard method), and those having non-slip device with serveral curved steel plate bars bolted inside the steel pipe pile(new method). As a result, specimens not having non-slip device had chemical debonding failure at 15.6tonf of peak uplift load and 27.57tonf of peak compression load. And the standard method and the new method showed about 8.9 times of peak uplift load and 6.2 times of peak compression load higher than specimens not having non-slip device. The load transfers of lower non-slip devices of the standard method and the new method were similar in behavior, while the higher non-slip device of the new method showed higher ratio of load transfer than that of the standard method. And these two methods had nearly the same composite action and structural capacity caused by non-slip devices.

Laser Micro-Welding Process in which Magnetic Fields are Applied (자기장을 이용한 레이저 마이크로 접합 공정)

  • Lee, Woo-Ram;Lee, Chul-Ku;Kim, Joo-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1655-1662
    • /
    • 2011
  • We have conducted a study on stainless steel laser-welding materials by using a laser beam for the evaluation. Stainless steel used in a rust and excellent thermal deformation has a variety of application. In this study, to improve the mechanical properties of stainless steel, a 50 W laser thermal source is used and magnetic fields are applied, on the basis of suggestions. The mechanical properties and performance are evaluated by performing a numerical analysis, tensile test, and shape, microstructure, and hardness test. The results show that the mechanical properties of improve increased speed the melting pool, tensile strength of 16 kPa rise, run into the melting zone and hardness 7 Hv.

Development of Curing Process for EMC Encapsulation of Ultra-thin Semiconductor Package (초박형 반도체 패키지의 EMC encapsulation을 위한 경화 공정 개발)

  • Park, Seong Yeon;On, Seung Yoon;Kim, Seong Su
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.47-50
    • /
    • 2021
  • In this paper, the Curing process for Epoxy Molding Compound (EMC) Package was developed by comparing the performance of the EMC/Cu Bi-layer package manufactured by the conventional Hot Press process system and Carbon Nanotubes (CNT) Heater process system of the surface heating system. The viscosity of EMC was measured by using a rheometer for the curing cycle of the CNT Heater. In the EMC/Cu Bi-layer Package manufactured through the two process methods by mentioned above, the voids inside the EMC was analyzed using an optical microscope. In addition, the interfacial void and warpage of the EMC/Cu Bi-layer Package were analyzed through C-Scanning Acoustic Microscope and 3D-Digital Image Correlation. According to these experimental results, it was confirmed that there was neither void in the EMC interior nor difference in the warpage at room temperature, the zero-warpage temperature and the change in warpage.

The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts (볼트 체결형 강판-콘크리트 합성보의 형상 제안)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.305-314
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and a shear connector to combine the two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, a new steel-plate concrete composite (SPCC) beam was developed to reduce the size of the shear connector and improve its workability. The SPCC beam was composed of folded steel plates and concrete, without any shear connector. The folded steel plate was assembled with high strength bolts instead of welding. To improve the workability in field construction, a hat-shaped cap was attached in the junction with the slab. Monotonic two-point load testing was conducted under displacement control mode. The flexural strength of the SPCC beam specimen was calculated to be 76% of that of the complete composite beam by using the plastic stress distribution method and strain compatibility method. The cap acted as the stud and accessory. The synthesis rate could be increased by controlling the gap of the cap, and the bending performance could be evaluated by using the strain fitting method considering the synthesis rate of the SPCC beam.

Study of adhesion properties of flexible copper clad laminate having various thickness of Cr seed layer under constant temperature and humidity condition (항온항습 조건하에서 Ni/Cr 층의 두께에 따른 FCCL의 접합 신뢰성 평가)

  • Choi, Jung-Hyun;Noh, Bo-In;Yoon, Jeong-Won;Kim, Yong-Il;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.80-80
    • /
    • 2010
  • 전자제품의 소형화, 경량화, 고집적화가 심화됨에 따라 전자제품을 구성하는 회로의 미세화 또한 요구되고 있다. 이러한 요구는 경성회로기판 (rigid printed circuit board, RPCB) 뿐만 아니라 연성회로기판 (flexible printed circuit board, FPCB) 에도 적용되고 있으며 이에 대한 많은 연구 또한 이루어지고 있다. 연성회로기판은 일반적으로 절연층을 이루는 폴리이미드 (polyimide, PI)와 전도층을 이루는 구리로 이루어져 있다. 폴리이미드는 뛰어난 열적 화학적 안정성, 우수한 기계적 특성, 연속공정이 가능한 장점을 가지고 있으나, 고온다습한 환경하에서 높은 흡습성으로 인해 전도층을 이루는 구리와의 접합특성이 저하되는 단점 또한 가지고 있다. 또한 전도층을 이루는 구리는 고온다습한 환경하에서 산화 발생이 용이하기 때문에 접합특성의 감소를 야기할 수 있다. 따라서 본 연구에서는 고온다습한 조건하에서 sputtering and plating 공정을 통해 순수 Cr seed layer를 가지는 연성회로기판의 seed layer의 두께와 시효시간의 변화로 인해 발생하는 접합특성의 변화를 관찰하고 분석하였다. 본 연구에서는 두께 $25{\mu}m$의 일본 Kadena사(社)에서 제작된 폴리이미드 상에 sputtering 공정을 통해 순수 Cr으로 이루어진 각각 두께 100, 200, $300{\AA}$의 seed layer를 형성한 후 전해도금법을 이용, 두께 $8{\mu}m$의 구리 전도층을 형성한 시료를 사용하였다. 제작된 시료는 고온다습한 환경하에서의 접합 특성의 변화를 관찰하기 위하여 $85^{\circ}C$/85%RH 항온항습 조건하에서 각각 24, 72, 120, 168시간 동안 시효처리 한 후, Interconnections Packaging Circuitry (IPC) 규격에 의거하여 접합강도를 측정하였다. 시료의 전도층은 폭 3.2mm 길이 230mm의 패턴을 가지도록, 절연층은 폭 10mm, 길이 230mm으로 구성되었으며 이를 50.8mm/min의 박리 속도로 각 시편당 8회의 $90^{\circ}$ peel test를 실시하였다. 파면의 형상과 화학적 조성을 분석하기 위해 SEM (Scanning electron microscope)과 EDS (Energy-dispersive X-ray spectroscopy)를 사용하였으며, 파면의 조도 측정을 위해 AFM (Atomic force microscope)을 사용하였다. 또한 계면의 화학적 결합상태를 분석하기 위해 XPS (X-ray photoelectron spectroscopy)를 통해 파면을 관찰 분석하였다.

  • PDF

Adhesion reliability of flexible copper clad laminate under constant temperature and humidity condition by thickness of Ni/Cr seed layer (항온항습 조건하에서 Ni/Cr 층의 두께에 따른 FCCL의 접합 신뢰성 평가)

  • Choi, Jung-Hyun;Noh, Bo-In;Yoon, Jeong-Won;Yoon, Jae-Hyun;Choi, Don-Hyun;Kim, Yong-Il;Jung, Seong-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.75-75
    • /
    • 2009
  • 연성회로기판은 일반적으로 절연체를 이루는 폴리이미드와 전도체를 이루는 구리로 구성되어 있다. 폴리이미드는 뛰어난 열적 화학적 안정성, 기계적 특성, 공정성 등의 장점으로 인해 연성회로기판의 절연체로서 제안되었지만 전도체를 이루는 구리와의 접합 특성이 우수하지 않기 때문에 많은 연구가 현재까지 진행되고 있고, 그 결과 연성회로기판의 접합 특성에 많은 개선이 이루어짐과 동시에 다양한 공정 방법이 제안되고 있다. 하지만 고온다습한 환경에서 사용될 경우 폴리이미드의 높은 흡습성과, 구리와 seed layer의 산화 문제로 인해 접합 특성이 저하된다는 단점 또한 가지고 있다. 따라서 본 연구를 통해 고온다습한 조건하에서 seed layer가 80Ni/20Cr 합금으로 구성된 연성회로기판의 seed layer의 두께와 시효시간으로 인해 발생하는 접합 신뢰성의 차이를 관찰하였다. 본 연구에서는 두께 $25{\mu}m$의 폴리이미드 위에 각각 100, 200, $300{\AA}$ 두께의 80Ni/20Cr의 합금 조성을 가지는 seed layer를 스퍼터링 공정을 통해 형성한 후 전해도금법을 이용하여 $8{\mu}m$ 두께의 구리 전도층을 형성하였다. 접합 특성 평가를 위해 ICP 규격에 따라 전도층 패턴을 폭 3.2mm, 길이 230mm로 시편을 제작하여 50.8mm/min의 이송 속도로 각 시편당 8회의 $90^{\circ}$ peel test를 실시하였다. 또한 $85^{\circ}C$/85% 항온항습 조건하에서 각각 24, 72, 120, 168시간 동안 시효 처리 후 같은 방법으로 연성회로기판의 접합 특성을 평가하였다. 파면의 형상과 조성을 분석하기 위해 SEM (Scanning electron microscope)과 EDS (Energy-dispersive X-ray spectroscopy)를 사용하였으며, 파면의 조도 측정을 위해 AFM (Atomic force microscope)을 사용하였다. 또한 파면의 잔여물 분석을 위해 EPMA (Energy probe microanalysis)를 사용하였고 계면의 화학적 결합상태를 분석하기 위해 XPS (X-ray photoelectron spectroscopy)를 통해 파면을 분석하였다.

  • PDF

Nano-scale Patterning on Diamond substrates using an FIB (FIB를 이용한 다이아몬드 기판 위의 나노급 미세 패턴의 형상 가공)

  • Song, Oh-Sung;Kim, Jong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1047-1055
    • /
    • 2006
  • We patterned nano-width lines on a super hard bulk diamond substrate by varying the ion beam current and ion beam sources with a dual beam field ion beam (FIB). In addition, we successfully fabricated two-dimensional nano patterns and three-dimensional nano plate modules. We prepared nano lines on a diamond and a silicon substrate at the beam condition of 30 kV, 10 pA $\sim$ 5 nA with $Ga^+$ ion and $H_2O$ assisted ion sources. We measured each of the line-width, line-depth, etched line profiles, etch rate, and aspect ratio, and then compared them. We confirmed that nano patterning was possible on both a bulk diamond and a silicon substrate. The etch rate of $H_2O$ source can be enhanced about two times than that of Ga source. The width of patterns on a diamond was smaller than that on a silicon substrate at the same ion beam power The sub-100 nm patterns on a diamond were made under the charge neutralization mode to prevent charge accumulation. We successfully made a two-dimensional, 240 nm-width text of the 300-lettered Lord's Prayer on a gem diamond with 30 kV-30 pA FIB. The patterned text image was readable with a scanning electron microscope. Moreover, three dimensional nano-thick plate module fabrication was made successfully with an FIB and a platinum deposition, and electron energy loss spectrum (EELS) analysis was easily performed with the prepared nano plate module.

  • PDF

Current Status and Investigation of International Co-operative Research Program-PINC(Program for the Inspection of Nickel Alloy Components) (국제공동연구 PINC(Program for the Inspection of Nickel Alloy Components) 현황 및 고찰)

  • Kim, Kyung-Cho;Kang, Sung-Sik;Song, Kyung-Ho;Chung, Koo-Kap;Chung, Hae-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • After several PWSCCs were found in Bugey(France), Ringhals(Sweden), Tihange(Belgium), Oconee, Arkansas, Crystal Fever, Davis-Basse, VC Summer(U.S.A.), Thuruga(Japan), USNRC and PNNL started the research on PWSCC, that is, PINC project. The aim of this project is to fabricate and obtain representative NDE mock-ups with flaws to simulate tight PWSCC cracks, to identify and quantitatively assess NDE methods for accurately detecting, sizing and characterizing tight cracks such as PWSCC, to document the range of locations and crack morphologies associated with PWSCC and observed responses and to incorporate findings from other ongoing PWSCC research programs, as appropriate. By participating in PINC project, Korean morphology technique about PWSCC and NDE technique have improved and become similar lever with other advanced country. Therefore, the evaluation technique of integrity for nickel alloy component has been improved by cooperation with university, research institute and industries.

Numerical Analysis Study for Optimal Design Method on Intersection between Longitudinal and Transversal Rib in Orthotropic Steel Deck Bridge (강바닥판교의 종리브-횡리브 교차연결 상세변화에 따른 최적설계방안의 수치해석 연구)

  • 배두병;공병승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.333-340
    • /
    • 2004
  • The use of the othotropic steel deck is steadily increased due to the advance of the technology in the steel bridges which recently have been longer. But the othotropic steel deck bridge is the structure that is very fragile to the fatigue, especially, the fatigue crack at the cross of the longitudinal rib and transversal rib is one of the biggest problems that othotropic steel deck bridges have. The causes of these fatigue cracks come from the secondary stress on out-plane behavior of transversal rib. In this study, we conducted the experiment to find the optimal details to improve fatigue strength on intersection between longitudinal rib and transversal rib in the othotropic steel deck bridge through numerical analysis using the experiment of the fatigue in the 3-dimensional real structure and program LUSAS. As a result of study, it is showed that the details of the korean standard section attached with a curved bulkhead plate is the most profitable. And, it is indicated that the stress which is generated when the reform improved section by parametic study can be reduced by about 50% at most or more. Along with the reduced stress and the longer interval between transversal ribs(G=400), the decreased steel amount by 4% and the shortened welding length by 34% make it possible to produce the othotropic steel deck bridge which is strong against fatigue.