• Title/Summary/Keyword: 용접부 노치

Search Result 43, Processing Time 0.02 seconds

Evaluation of PWHT cracking susceptibility of the Cr-Mo steel alloys (Cr-Mo 합금강의 후열처리 균열 감수성 평가)

  • Kim, Sang-Jin;Kim, Ki-Soo;Lee, Young-Ho
    • 대한공업교육학회지
    • /
    • v.31 no.1
    • /
    • pp.200-210
    • /
    • 2006
  • This C-ring test, normally employed for evaluating susceptibility to stress-corrosion cracking, was determined to be a suitable small scale test to evaluate PWHT(Post-Weld Heat Treatment) cracking susceptibility. This test is possible to incorporate an actual weld, to introduce a notch into the coarse grained HAZ(Heat Affected Zone), to load the coarse grained HAZ any level of stress ad, most importantly, since the C-ring is an approximately constant strain type test, the stress decreases with time at temperature in a manner similar to that of an actual steel weldment. The procedure employed in making the C-ring was presented in the experimental procedure section, however, several points deserve further discussion. The walls of the weld groove are made along radial lines form the center of th var in order to obtain an HAZ which is oriented perpendicular to the walls of the machined C-ring. Therefore, the plane of maximum stress will be aligned through the HAZ and, therefore, crack propagation will not be forced to deviate form the plane of maximum stress in order to remain in the coarse grained HAZ as is the case with the Y groove test.

용접부 쉐브론노치 형상에 대한 균열전파 특성

  • 김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.194-197
    • /
    • 1996
  • The high-strength aluminum alloy 7075-T651 was used to observe the fatigue-crack-propagation behavior for the various stress ratios with constant amplitude loading and thus to predict the fatigue life. With a chevron notch in the specimen the fatigue-crack-propagation behavior of through crack was investigated. Crack propagation behavior of through crack in the depth direction and crack growth of weldments were experimentally studied. Base material heat affected zone and weld material were considered in the fracture of weldments. The change of crack-propagation length with respect to several parameters such as stress intensity factor range(ΔK) effective stress intensity factor range(ΔKeff)ration of effective stress intensity factor range(U) stress intensity factor of crack opening point(K op) maximum stress intensity factor(K max) and number of cycles(Nf)was determined. The crack length of through crack of weldments was 2.4mm and the remaining part was a base material. The experiment was accomplished by making the crack propagate near the base material.

  • PDF

Investigation on Effects of Residual Stresses and Charpy V-Notch Impact Energy on Brittle Fractures of the Butt Weld between Close Check Valve and Piping, and of the Valve Body in Nuclear Power Plants (원전 역지 밸브/배관 맞대기 용접부와 밸브 몸체의 취성 파괴에 미치는 잔류응력 및 Charpy V-노치 충격에너지의 영향 고찰)

  • Kim, Jong-Sung;Kim, Hyun-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.69-73
    • /
    • 2015
  • The study investigated effects of residual stresses and Charpy impact energy on brittle fractures of the butt weld between the valve and the piping, and of the valve body in nuclear power plants via a linear elastic fracture mechanics approach in the ASME B&PV Code, Sec.XI and finite element analysis. Weld residual stress in a butt weld between close check valve and piping, and residual stress in the valve due to casting process were assumed to be proportional to yield strength of base metal. Operating stresses in the butt weld and the valve body were calculated using approximate engineering formulae and finite element analysis, respectively. Applied stress intensity factors were calculated by assuming postulated cracks with specific sizes and then by substituting the residual stresses and the operating stresses into engineering formulae presented in the ASME B&PV Code, Sec.III. Plane strain fracture toughness was derived by using a correlation between Charpy V-notch impact energy and fracture toughness. Structural integrity of the weld and the body against brittle fracture was assessed by using the applied stress intensity factors, plane strain fracture toughness and the linear elastic fracture mechanics approach. As a result, it was identified that the structural integrity was maintained with decreasing the residual stress levels and increasing the Charpy V-notch impact energy.

Analysis of Welding Residual Stress Redistributions on Notched Multi-pass FCA Butt Weldment (노치가공에 의한 다층 FCA 용접부의 잔류응력 재분포 특성)

  • Bang, Hee-Seon;Bang, Han-Sur;Oh, Ik-Hyun;Kim, Jun-Hyung
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.86-91
    • /
    • 2010
  • In the present study, two-dimensional plane deformation thermo elasto-plastic analysis has been carried out, in order to investigate the thermal and mechanical behaviour (residual stress, plastic strain, magnitude of stress and their distribution and production mechanism) on multi-pass FCA butt weldment of high strength EH36-TMCP ultra thick plate. Moreover, this study can be considered as a basis for analysing the fracture toughness, KIC, and its effect on welding residual stress redistribution with notch on multi-pass FCA butt weldment, in future. The results of welding residual stress obtained from thermo elasto-plastic analysis has been compared and verified with the results measured by XRD.

Estimation Fatigue Life of Weldments by Notch Stress Approaches (노치응력법에 의한 용접 연결부 피로수명 추정에 관한 연구)

  • Yang, Park-Dal-Chi;Song, Joon-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.47-51
    • /
    • 2011
  • This paper analyzes the fatigue-life of welded joints using the notch stress approach. In the notch stress approach, the notch effects are usually approximated by introducing weld-bead parameters for the local detailed weld joints. The actual bead shape is complex and 3-dimensional. It may also greatly influence the fatigue strength. In this study, the welded shape was modeled using a 3D-scanner. The critical distance method was adopted in the evaluation of the fatigue effective notch stress for the weldments. Fatigue life tests were performed to verify the present method of fatigue life estimation for two types of welded plates with longitudinal attachments. The estimated results of the present methods were applied to the results of the experiment. The results of the analysis showed that the scatter of fatigue-life for the experimental data expressed in the nominal stress was significantly reduced by applying the effective fatigue stress of the present study.

Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld (UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구)

  • Lee, Kang-Yong;Kim, Joon-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.531-539
    • /
    • 1996
  • The research for the classification of the artificial defects in welding parts is performed using the pattern recognition technology of ultrasonic signal. The signal pattern recognition package including the user defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection. The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian classifier are compared and discussed. The pattern recognition technique is applied to the classification of artificial defects such as notchs and a hole. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the artificial defects.

  • PDF

Evaluation of Reheat Cracking Susceptibility with Simulated Heat Affected Zones in Cr-Mo-V Turbine Rotor Steel (CrMoV 터빈로터강에서 모의 열영향부 시험편을 이용한 재열균열 민감도평가)

  • 김광수
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.89-102
    • /
    • 1995
  • The evaluation of reheat cracking susceptibility in CrMoV turbine rotor steel was performed using thermally simulated heat affected zones. The examinations were carried out in terms of microstructural characterization, microhardness measurement and a Charpy type notch opening three point bend test. It was found that reheat cracking susceptibility increased as the peak temperature increased. This effect was due to the combined effects of the carbide dissolution and unrestricted grain growth at 1350.deg. C peak temperature. Reheat cracking susceptibility was estimated based on microhardness measurement and prior austenite grain size. It was established that for this particular material, reheat cracking in coarse grained heat affected zone can be eliminated if the microhardness is below about 360DPH and the grain size is below about 30.mu.m. It is evident that reheat cracking susceptibility can be eliminated or reduced by carefully controlling the welding parameters such that a refined structure is produced in the coarse grained heat affected zone.

  • PDF

A Study on Mechanical Properties According to the Depth of Notch in SM20C Friction Welding Zone (SM20C 마찰용접부(摩擦鎔接部)의 노치 깊이에 따른 기계적(機械的) 성질(性質) 연구(硏究))

  • Lee, Se-Gyoung;Chung, Jun-Mo;Park, Chun-Bong;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The present study examined the mechanical properties of the friction welding zone of solid and hollow shafts made with SM20C according to the depth of the notch. Friction welding was conducted at welding conditions of 2,000 rpm, friction pressure of 60MPa, friction time of 1.4 seconds, upset pressure of 100MPa, and upset time of 2.0 seconds. In the tensile strength test, the tensile strength decreased as the depth of the notch increased. Tensile strength was moderately high when the depth of the notch was 2mm. The tensile strength of the welding zone increased as the friction revolution radius increased, because the latter led to the generation of adequate friction heat. According to the hardness test, hardness likewise increased as e friction revolution radius increased. In the bending test, the bend strength of the solid shaft decreased when the depth of the notch was 0-2mm but increased when the latter was 3-5mm. With regard to the hollow shaft, the bend strength drastically decreased when the depth of the notch was 3-4mm. Upon examination it was found that the microstructure became finer when the friction revolution radius increased.

Design and Performance Evaluation of Shear Wave Phased Array Ultrasonic Transducer (횡파 위상배열 초음파 탐촉자 설계 및 성능 평가)

  • Yoon, Byung-Sik;Lee, Hee-Jong;Braconnier, Dominique
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.185-191
    • /
    • 2012
  • Typically, a wedge is involved to generate effectively high inspection angle in pipe weld inspection using phased array ultrasonic technique. But the usage of this wedge for weld or access limited area can cause coverage limitation for the examination volume because of the wedge front length. Therefore, the shear wave phased array probe which can generate high inspection angle without wedge is essentially necessary. In this paper, the shear wave phased array ultrasonic probe which can generate high inspection angle designed by modeling and manufactured from the modelling result. And this shear wave probe tested whether it can detect and sizing for EDM test block that contains various depth. As results, the experimental results show that the designed shear wave phased array probe can detect and size with reliable accuracy. Therefore if this phased array probe apply in field inspection, it is expected that it show more reliable inspection result for plant structure having access limitation.

Study on Evaluation of Plastic Deformation Zone at Crack Tip for the Multi-Passed Weld Region of the Pressure Vessel Steel Using Nondestructive Method (비파괴법에 의한 압력용기 강 다층용접부의 균열선단에서 소성변형 역성장거동 평가에 관한 연구)

  • Na, Eui-Gyun;Lee, Sang-Guen
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.473-478
    • /
    • 2009
  • The purpose of this study is to evaluate the behaviour of the plastic deformed zone at crack tip on the standard Charpy specimens which were taken from the multi-passed weld block of the pressure vessel steel. Notch was machined on the standard Charpy test specimens and pre-crack which was located around the fusion line was made under the repeat load. Four point bend and acoustic emission tests were carried out simultaneously. The size of plastic region at crack tip was calculated using stress intensity factor. Relationships between characteristics of acoustic emission and plastic zone size at crack tip were discussed through the cumulative AE energy. Regardless of the specimens, AE signals were absent within the elastic region almost and most of AE signals were produced at the plastic deformation region from yield point to the mid-point between yield and maximum load. More AE signals for the weldment were produced compared with the base-metal and PWHT specimen. Relations between plastic deformed zones at crack tip and cumulative AE energy for the weldment and PWHT specimen were different quietly from the base-metal. Besides, number of AE counts for the weldment was the larger than those of the base-metal and PWHT specimen.