• Title/Summary/Keyword: 용어추출

Search Result 365, Processing Time 0.029 seconds

Disease Prediction By Learning Clinical Concept Relations (딥러닝 기반 임상 관계 학습을 통한 질병 예측)

  • Jo, Seung-Hyeon;Lee, Kyung-Soon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2022
  • In this paper, we propose a method of constructing clinical knowledge with clinical concept relations and predicting diseases based on a deep learning model to support clinical decision-making. Clinical terms in UMLS(Unified Medical Language System) and cancer-related medical knowledge are classified into five categories. Medical related documents in Wikipedia are extracted using the classified clinical terms. Clinical concept relations are established by matching the extracted medical related documents with the extracted clinical terms. After deep learning using clinical knowledge, a disease is predicted based on medical terms expressed in a query. Thereafter, medical terms related to the predicted disease are selected as an extended query for clinical document retrieval. To validate our method, we have experimented on TREC Clinical Decision Support (CDS) and TREC Precision Medicine (PM) test collections.

Analysis of students' word association about the science terminologies used in the 'Force and Motion' unit in middle school science textbook (중학교 '힘과 운동' 단원에 사용된 과학 용어에 대한 학생들의 단어 연상 분석)

  • Yun, Eunjeong;Yi, Yunjoo;Park, Yunebae
    • Journal of Science Education
    • /
    • v.37 no.3
    • /
    • pp.573-582
    • /
    • 2013
  • This study was conducted to inquire the semantic structure with science terminology used in middle school science class, and based on this, we wanted to look for the way to increase effectiveness of science teaching. In this study, we extracted twenty-six science terminologies used in "Force and Motion" unit in middle school science textbook, and administered word association test using the 26 science terminologies to 316 middle school students. As the result, we found that students had a divergent semantic structure to given science terminology, and there were cases to be interpreted as different meaning with teacher's intention. Also, we identified the terminologies which were not familiar to middle school students. It was found that female students were more familiar with science termilology than male students, and there were differences between schools.

  • PDF

The Design and Implementation of Automatic Query Term Refiner for Term Expansion/Restriction in Information Retrieval (정보검색에서 질의 용어 확장/한정을 위한 자동 질의 용어 정련기의 설계 및 구현)

  • Kang, Hyun-Su;Kang, Hyun-Kyu;Lee, Yong-Seok;Kim, Young-Sum
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.65-72
    • /
    • 1998
  • 인터넷 정보 검색에서 이용자들이 주로 사용하는 질의는 2-3개의 용어로 이루어진 짧은 질의이다. 또만 동음이의어를 갖는 용어를 사용하기도 한다. 짧은 질의를 처리하는 일반적인 방법은 시소러스[8]나 Wordnet[1]을 이용한 질의 확장이다. 그러나 시소러스나 Wordnet과 같은 지식 베이스는 구축하기가 용이하지 않으며, 도메인 종속적인 면과 단어의 회귀(sparseness) 문제를 극복하기 어려운 단점이 있다. 또한 동음이의어 용어로 인하여 검색의 정확성이 털어지는 문제점이 있다. 한편, 사용자의 질의를 주의 깊게 살펴보면, 질의로부터 관련 용어 분류 정보를 추출할 수 있다. 본 논문은 사용자의 질의가 관련 용어 분류 정보에 의해 유기적으로 관계를 가지고 있다는 사실에 기인하여 관련 용어 분류 정보에 따라 자동으로 용어 확장 및 한정을 수행하며 적절한 용어 가중치를 부여하는 자동 질의 용어 정련기를 제안한다. 자동 질의 용어 정련기는 용어의 확장, 한정 및 가중치 부여를 통하여 사용자의 정보 검색 요구를 명확히 하여 검색의 정확성을 향상시킨다.

  • PDF

Automatic Korean to English Cross Language Keyword Assignment Using MeSH Thesaurus (MeSH 시소러스를 이용한 한영 교차언어 키워드 자동 부여)

  • Lee Jae-Sung;Kim Mi-Suk;Oh Yong-Soon;Lee Young-Sung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.155-162
    • /
    • 2006
  • The medical thesaurus, MeSH (Medical Subject Heading), has been used as a controlled vocabulary thesaurus for English medical paper indexing for a long time. In this paper, we propose an automatic cross language keyword assignment method, which assigns English MeSH index terms to the abstract of a Korean medical paper. We compare the performance with the indexing performance of human indexers and the authors. The procedure of index term assignment is that first extracting Korean MeSH terms from text, changing these terms into the corresponding English MeSH terms, and calculating the importance of the terms to find the highest rank terms as the keywords. For the process, an effective method to solve spacing variants problem is proposed. Experiment showed that the method solved the spacing variant problem and reduced the thesaurus space by about 42%. And the experiment also showed that the performance of automatic keyword assignment is much less than that of human indexers but is as good as that of authors.

A Feature Selection Technique for an Efficient Document Automatic Classification (효율적인 문서 자동 분류를 위한 대표 색인어 추출 기법)

  • 김지숙;문현정;김영지;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • 2001.06a
    • /
    • pp.295-302
    • /
    • 2001
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 기존의 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 비감독학습 기법에 의해 대량의 문서를 효율적으로 분류하기 위한 대표 색인어 추출 기법을 제안하였다. 컴퓨터 분야의 논문을 대상으로 각 분야별 대표 색인어를 추출하여 유사한 문서끼리 분류하는 실험을 통해 제안된 방법의 효율성을 보였다.

  • PDF

Document classification using a deep neural network in text mining (텍스트 마이닝에서 심층 신경망을 이용한 문서 분류)

  • Lee, Bo-Hui;Lee, Su-Jin;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.615-625
    • /
    • 2020
  • The document-term frequency matrix is a term extracted from documents in which the group information exists in text mining. In this study, we generated the document-term frequency matrix for document classification according to research field. We applied the traditional term weighting function term frequency-inverse document frequency (TF-IDF) to the generated document-term frequency matrix. In addition, we applied term frequency-inverse gravity moment (TF-IGM). We also generated a document-keyword weighted matrix by extracting keywords to improve the document classification accuracy. Based on the keywords matrix extracted, we classify documents using a deep neural network. In order to find the optimal model in the deep neural network, the accuracy of document classification was verified by changing the number of hidden layers and hidden nodes. Consequently, the model with eight hidden layers showed the highest accuracy and all TF-IGM document classification accuracy (according to parameter changes) were higher than TF-IDF. In addition, the deep neural network was confirmed to have better accuracy than the support vector machine. Therefore, we propose a method to apply TF-IGM and a deep neural network in the document classification.

Development of the Corpus Refinement Workbench for Science & Technology Terminology (과학기술 전문용어를 위한 정제 말뭉치 워크벤치 개발)

  • Lee, Byeong-Hee;Jeong, Hwi-Woong;Jung, Han-Min;Sung, Won-Kyung
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.623-626
    • /
    • 2005
  • 본 논문에서는 효과적으로 문서를 정제할 수 있는 작업환경인 웹 기반의 정제 말뭉치 워크벤치 개발에 관하여 기술한다. 또한 정보검색의 효율성 향상, 전문용어의 자동추출, 전문용어가 쓰인 문맥의 파악 등을 위하여 정제된 문서에 포함된 과학기술 전문용어를 표시할 수 있게 하는 작업 환경도 구축하였다. 이렇게 개발된 정제 말뭉치 워크벤치와 전문용어 태깅 툴을 이용하여 과학기술과 관련된 신문 기사에서 한국어 전문용어를 태깅하고, 논문의 제목과 초록에서 한영 전문용어 쌍을 태깅하는 작업을 진행하였다.

  • PDF

Terminology Tagging System using elements of Korean Encyclopedia (백과사전 기반 전문용어 태깅 시스템)

An Expresson of Domain Searching Term Weight using Fuzzy (퍼지를 이용한 도메인 검색용어 중요성의 표시)

  • Jin, Hyun-Soo;Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.139-144
    • /
    • 2009
  • The leveling of technical internet domain term with its aim to accumulate knowledge that machine can comprehend, which has been used widely in recent years. If stratify domain term weight, we believe that machine can manage and analyze in formation on its own using the ontology. In this paper, we propose an algorithm that allows us to extract properties of ontology weight from structured information already existing in web documents. In particular by stratification of the domain knowledge that is composed of property information, we were able to make the algorithm better and improve the quality of extraction results. In our experiments with 50 thousands targeted documents, we were able to extract property information with 94% confidence.

  • PDF

Domain-specific Ontology Construction by Terminology Processing (전문용어의 처리에 의한 도메인 온톨로지의 구축)

  • 임수연;송무희;이상조
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.353-360
    • /
    • 2004
  • Ontology defines the terms used in a specific domain and the relationships between them and represents them as hierarchical taxonomy. The present paper proposes a semi-automatic domain-specific ontology construction method based on terminology Processing. For this purpose, it presents an algorithm to extract terminology according to the noun/suffix pattern of terminology in domain texts and find their hierarchical structure. The experiment was carried out using pharmacy-related documents. As singleton terminology with noun/suffix were identified, the average accuracy was 92.57%. In case of multi-word terminology, the average accuracy was 66.64%. The constructed ontology forms natural semantic clusters with based on suffices and semantic information, so can be utilized in approaches to specific knowledge such as information look-up or as the base of inference to improve searching abilities.