• Title/Summary/Keyword: 용어추출

Search Result 365, Processing Time 0.029 seconds

The Design and Implementation of Lewdness Site Detection System (음란 사이트 탐지 시스템의 설계 및 구현)

  • 최상필;김병만;이숙희;김주연;김경호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.196-198
    • /
    • 2000
  • 본 논문에서는 음란사이트를 효과적으로 탐지하기 위하여 퍼지 추론을 이용한 방법을 제안한다. 사용자로부터 몇 개의 음란 사이트 URL을 질의로 입력받아, 해당 URL로부터 수집된 웹 문서들에서 웹 태그와 불용어를 제외한 모든 용어들을 추출한 후, 용어의 DF, TF, HI(Heuristic Information) 정보들을 퍼지 추론에 적용하여 사용자가 제시한 음란 사이트에서 용어의 중요도를 산정한다. 또한, 웹 로봇은 인터넷에서 웹 문서를 수집하고, 퍼지 추론에 의해 산정된 용어의 중요도를 이용하여 수집된 웹 문서가 음란 문서일 가능성을 판별한다.

  • PDF

Development of a Framework for Semi-automatic Building Test Collection Specialized in Evaluating Relation Extraction between Technical Terminologies (기술용어 간 관계추출의 성능평가를 위한 반자동 테스트 컬렉션 구축 프레임워크 개발)

  • Jeong, Chang-Hoo;Choi, Sung-Pil;Lee, Min-Ho;Choi, Yun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.481-489
    • /
    • 2010
  • Due to the increase of the attention on relation extraction systems, the construction of test collections for assessing their performance has emerged as an important task. In this paper, we propose semi-automatic framework capable of constructing test collections for relation extraction on a large scale. Based on this framework, we develop a test collection which can assess the performance of various approaches to extracting relations between technical terminologies in scientific literatures. This framework can minimize the cost of constructing this kind of collections and reduce the intrinsic fluctuations which may come from the diversity in characteristics of collection developers. Furthermore, we can construct balanced and objective collections by means of controlling the selection process of seed documents and terminologies using the proposed framework.

Comparison of term weighting schemes for document classification (문서 분류를 위한 용어 가중치 기법 비교)

  • Jeong, Ho Young;Shin, Sang Min;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.265-276
    • /
    • 2019
  • The document-term frequency matrix is a general data of objects in text mining. In this study, we introduce a traditional term weighting scheme TF-IDF (term frequency-inverse document frequency) which is applied in the document-term frequency matrix and used for text classifications. In addition, we introduce and compare TF-IDF-ICSDF and TF-IGM schemes which are well known recently. This study also provides a method to extract keyword enhancing the quality of text classifications. Based on the keywords extracted, we applied support vector machine for the text classification. In this study, to compare the performance term weighting schemes, we used some performance metrics such as precision, recall, and F1-score. Therefore, we know that TF-IGM scheme provided high performance metrics and was optimal for text classification.

Pattern Construction for Semantic Relation Extraction using Verb Information (동사 정보를 활용한 의미 관계 추출을 위한패턴 구축)

  • Kim, Se-Jong;Lee, Yong-Hun;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.118-123
    • /
    • 2008
  • 온톨로지란 실세계에 존재하는 사물 및 개념, 그리고 용어들 간의 관계들을 컴퓨터가 이해할 수 있는 형태로 표현한 것이다. 온톨로지 구축에 있어서 대용량 코퍼스의 활용은 해당코퍼스에서 등장하는 용어들과 이들 사이에서 나타나는 문자열을 일종의 패턴으로 취급하여 특정 패턴과 함께 나타나는 용어 쌍들을 해당 패턴이 대표하는 의미 관계로 설정하는 방식을 취한다. 그러나 기존의 방법은 주로 두 용어들 사이에서 나타나는 문자열만을 고려하여 패턴을 추출하기 때문에 해당 문장에 포함된 보다 다양한 문장 정보들을 활용할 수 없다. 본 논문은 이러한 한계점을 감안하여, 용어 쌍 사이에서 나타나는 문자열과 주변 동사 정보를 함께 고려함으로써 패턴의 정교성을 향상시키는 방법을 제안한다. 또한 동사들의 동의어를 활용하여 다양한 용어들을 포괄할 수 있는 일반화된 패턴을 구축한다. 본 방법론은 is-a 관계의 경우 64%, part-of 관계의 경우 83%, made-of 관계의 경우 73%, use 관계의 경우 72%의 정확률을 보였으며 모두 기존 방법보다 향상된 결과를 가져왔다.

  • PDF

Visualization of Conference Paper Topics and Trends According to Author-Assigned Index Terms (저자 지정 색인 용어에 따른 컨퍼런스 논문 주제 및 동향 시각화)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.340-342
    • /
    • 2022
  • Index Terms, or keywords, are an important component of research papers because they present a quick overview of the main subjects covered in the research paper by highlighting the most important nouns. In this study, we extracted the author-assigned index terms from KIICE Conference Proceedings dating back to 2018 for seasonal conferences, and 2016 for the international conference (ICFICE). The extracted index terms were standardized and analyzed to gain an understanding of research topic trends and any over or under-represented research topics. This kind of index term analysis is expected to be useful in helping researchers not only identify additional potential topics for their own research, but also aid them in selecting from a common vocabulary of keywords when they assign index terms to their research papers.

  • PDF

Terms Based Sentiment Classification for Online Review Using Support Vector Machine (Support Vector Machine을 이용한 온라인 리뷰의 용어기반 감성분류모형)

  • Lee, Taewon;Hong, Taeho
    • Information Systems Review
    • /
    • v.17 no.1
    • /
    • pp.49-64
    • /
    • 2015
  • Customer reviews which include subjective opinions for the product or service in online store have been generated rapidly and their influence on customers has become immense due to the widespread usage of SNS. In addition, a number of studies have focused on opinion mining to analyze the positive and negative opinions and get a better solution for customer support and sales. It is very important to select the key terms which reflected the customers' sentiment on the reviews for opinion mining. We proposed a document-level terms-based sentiment classification model by select in the optimal terms with part of speech tag. SVMs (Support vector machines) are utilized to build a predictor for opinion mining and we used the combination of POS tag and four terms extraction methods for the feature selection of SVM. To validate the proposed opinion mining model, we applied it to the customer reviews on Amazon. We eliminated the unmeaning terms known as the stopwords and extracted the useful terms by using part of speech tagging approach after crawling 80,000 reviews. The extracted terms gained from document frequency, TF-IDF, information gain, chi-squared statistic were ranked and 20 ranked terms were used to the feature of SVM model. Our experimental results show that the performance of SVM model with four POS tags is superior to the benchmarked model, which are built by extracting only adjective terms. In addition, the SVM model based on Chi-squared statistic for opinion mining shows the most superior performance among SVM models with 4 different kinds of terms extraction method. Our proposed opinion mining model is expected to improve customer service and gain competitive advantage in online store.

Enhancement of Word Clustering through Feature Extension (자질 확장에 따른 용어 클러스터링의 성능 향상)

  • Park Eun-Jin;Kim Jae-Hoon;Ock Cheol-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.529-531
    • /
    • 2005
  • 이 논문에서는 용어 클러스터링의 성능에 직접적인 영향을 주는 자질 확장에 따른 시스템의 성능 변화를 보았다. 객관적인 성능 비교를 위하여 용어 클러스터링 결과와 한국어 의미 계층망에서 추출한 클러스터를 비교하였다. 실험 결과, 용어의 뜻 풀이말을 자질로 사용한 경우보다 자질을 확장한 방법(Bigram, Case)이 성능이 좋게 나왔으며, 자질확장 시에 사용되는 말뭉치의 추출방법에 따라 다른 성능을 보였는데, 단순히 Bigram 정보를 사용하여 확장한 것 보다는 동사의 격 관계(Case)정보를 이용한 것이 성능이 좋게 나왔다.

  • PDF

Detecting and classification ADRs using Named Entity Recognition on social media (개체명 인식을 이용한 소셜 미디어에서의 약물 부작용 표현 추출 및 분류)

  • Jeong, Hyeon-jeong;Kim, Hyon Hee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.443-446
    • /
    • 2021
  • 의약품에 대한 안전성 정보 수집과 관리는 온라인, 오프라인을 통해 약물 이상 사례를 보고받는 형태로 진행되고 있다. 하지만 소비자들의 자발적인 참여로 이루어지므로 실제 발생하는 약물 부작용보다 데이터가 현저히 적다는 단점이 존재한다. 본 논문에서는 약물 이상 데이터 희소성 문제를 해결 할 수 있도록 소셜 미디어에서 약물 부작용 표현을 찾을 수 있도록 하였다. 소셜 미디어의 경우에는 표준 약물 부작용 용어를 사용하기보다는 일반인들이 자연어로 표현한 경우가 많으므로 개체명 인식 기법을 이용해 부작용을 추출할 수 있는 모델을 개발하였다. 또한 추출된 부작용 표현을 표준용어로 분류할 수 있는 모델을 제시하였다. 실험 결과 제안한 두 가지 모델은 0.9 이상의 정확도를 얻을 수 있었으며, 일반 사용자들이 자연어로 표현한 약물 부작용 표현을 효과적으로 찾아내고 표준 부작용 용어로 매핑할 수 있음을 보여준다.

Comparison of Term-Weighting Schemes for Environmental Big Data Analysis (환경 빅데이터 이슈 분석을 위한 용어 가중치 기법 비교)

  • Kim, JungJin;Jeong, Hanseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.236-236
    • /
    • 2021
  • 최근 텍스트와 같은 비정형 데이터의 생성 속도가 급격하게 증가함에 따라, 이를 분석하기 위한 기술들의 필요성이 커지고 있다. 텍스트 마이닝은 자연어 처리기술을 사용하여 비정형 텍스트를 정형화하고, 문서에서 가치있는 정보를 획득할 수 있는 기법 중 하나이다. 텍스트 마이닝 기법은 일반적으로 각각의 분서별로 특정 용어의 사용 빈도를 나타내는 문서-용어 빈도행렬을 사용하여 용어의 중요도를 나타내고, 다양한 연구 분야에서 이를 활용하고 있다. 하지만, 문서-용어 빈도 행렬에서 나타내는 용어들의 빈도들은 문서들의 차별성과 그에 따른 용어들의 중요도를 나타내기 어렵기때문에, 용어 가중치를 적용하여 문서가 가지고 있는 특징을 분류하는 방법이 필수적이다. 다양한 용어 가중치를 적용하는 방법들이 개발되어 적용되고 있지만, 환경 분야에서는 용어 가중치 기법 적용에 따른 효율성 평가 연구가 미비한 상황이다. 또한, 환경 이슈 분석의 경우 단순히 문서들에 특징을 파악하고 주어진 문서들을 분류하기보다, 시간적 분포도에 따른 각 문서의 특징을 반영하는 것도 상대적으로 중요하다. 따라서, 본 연구에서는 텍스트 마이닝을 이용하여 2015-2020년의 서울지역 환경뉴스 데이터를 사용하여 환경 이슈 분석에 적합한 용어 가중치 기법들을 비교분석하였다. 용어 가중치 기법으로는 TF-IDF (Term frequency-inverse document frquency), BM25, TF-IGM (TF-inverse gravity moment), TF-IDF-ICSDF (TF-IDF-inverse classs space density frequency)를 적용하였다. 본 연구를 통해 환경문서 및 개체 분류에 대한 최적화된 용어 가중치 기법을 제시하고, 서울지역의 환경 이슈와 관련된 핵심어 추출정보를 제공하고자 한다.

  • PDF

Research to establish a road map for the standardization in military and commercial terminology (민·군규격용어 표준화를 위한 로드맵 구축 연구)

  • Park, jeong-ho;Choi, young-ho;Im, ik-soon;Jang, hyo-jun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.251-252
    • /
    • 2015
  • 본 연구는 국방규격서의 전문어, 오용어, 어문규정 및 순화어 미(未)준수 어휘를 추출, 정의 또는 순화어로 정제하는 맵핑구조를 제시, 민 군규격용어 표준화를 위한 정보업무 로드맵을 구축하여 민간용어와의 호환성 및 일관성을 유지할 수 있는 지원체계를 연구하였다. 대상 규격용어는 KS용어표준 원칙을 기본으로 한 신뢰도 평가와 텍스트 마이닝 (text mining)빈도분석을 이용하여 선정하였으며, 시소러스(thesaurus) 체계를 삽입, 개념기반 서비스의 확장성을 제시하였다. 이를 기반으로 산출된 규격용어 DB는 민간 및 국방 관련분야의 용어표준관리 정보체계에 검색 및 용어설명에 활용될 수 있다.

  • PDF