전문용어는 특정 분야의 전문가 사이에서 통용되는 표현 매체이며, 일반용어에 비해 생성과 소멸의 주기가 짧은 특징을 가지고 있다. 이런 특징 때문에 일반용어 사전구축과 달리 전문용어 사전을 구축하기 위해서는 신속한 대응전략이 필요하다. 이를 위해 본 논문에서는 전문용어 사전 구축을 위한 다음과 같은 두 단계의 과정을 제안한다. 우선 형태소 후처리와 결합규칙을 이용하여 1,200만 어절의 신문 말뭉치로부터 단일어 10만과 복합어 30만의 용어후보를 추출하고, 고빈도 용어 후보 6만개를 선별해 용어지배지수(Term Dominance Value)라는 개념을 도입하여 전문용어를 선정한다. 실험을 통해 용어지배지수 순위와 누적빈도순위 및 최근연도 순위를 비교한 결과 본 논문에서 제안한 용어지배지수가 전문용어 활용도를 나타내는 훌륭한 지표역할을 할 수 있음을 확인할 수 있었다.
Proceedings of the Korean Society for Information Management Conference
/
1998.08a
/
pp.227-230
/
1998
문헌정보학분야의 용어사전을 이용한 자동시소러스 구축을 위한 첫단계로$\ulcorner$문헌정보학 용어사전$\lrcorner$ MRD를 구성하고 이를 이용하여 상위어 자동 추출알고리즘을 개발하였다. MRD구성시 전처리과정을 통하여 상위어 추출에 불필요한 정보가 수록되는 것을 방지하였다. 상위어 추출을 위한 알고리즘 개발은 무작위 표본추출을 통하여 $\ulcorner$문헌정보학 용어사전$\lrcorner$에 기술된 문장의 구문적 특성을 분석한 후, 이 구문정보를 이용하여 수행하였다. 본 연구에서 제시된 알고리즘의 효율성 평가결과 89.4%의 정확도를 보였다.
Proceedings of the Korea Database Society Conference
/
2000.11a
/
pp.210-215
/
2000
최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 일반적인 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 대량의 문서로부터 유용한 지식 정보를 찾기 위하여 의미적으로 연관된 전문 용어들끼리 클러스터링 하기 위한 방법을 제안하였다. 학술 논문을 대상으로 전문 용어를 추출하여 관련된 용어들끼리 클러스터를 구성하는 실험을 통하여 제안된 방법의 효율성을 보였다.
Annual Conference on Human and Language Technology
/
2012.10a
/
pp.175-180
/
2012
기술용어 패러프레이즈 (Terminological Paraphrase, TP)는 학술 문헌 내에서 기술 용어의 개념 및 정의를 다른 형태로 풀어서 알기 쉽게 서술적 문구 (descriptive expression) 를 의미한다. 이러한 TP들에 대한 효율적인 식별과 추출은 학술 정보에 대한 개념적 접근이나 학술 정보 검색의 재현율 향상에 매우 중요하다. 본 논문은 생명 공학 분야의 논문에 나타나는 다양한 형태의 TP들을 효율적으로 추출하기 위한 정보 검색 기반의 추출 방법론을 제시하고 총 여섯 가지의 추출 랭킹 모델을 기반으로 이를 결합함으로써 TP추출의 확장 가능성에 대한 실험적 연구를 수행한다. 실험 결과, 활용된 랭킹 모델이 서로 상호 보완적인 관계에 있음을 알 수 있었으며, 랭킹 결합에 의한 성능 개선 효과를 얻을 수 있었다.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.9
/
pp.837-843
/
2001
In this work, we propose a new method of extracting and weighting representative keywords(RKs) from a few documents that might interest a user. In order to extract RKs, we first extract candidate terms and them choose a number of terms called initial representative keywords (IRKs) from them through fuzzy inference. Then, by expanding and reweighting IRKs using term co-occurrence similarity, the final RKs are obtained. Performance of our approach is heavily influenced by effectiveness of selection method of IRKs so that we choose fuzzy inference because it is more effective in handling the uncertainty inherent in selecting representative keywords of documents. The problem addressed in this paper can be viewed as the one of calculating center of document vectors. So, to show the usefulness of our approach, we compare with two famous methods - Rocchio and Widrow-Hoff - on a number of documents collections. The result show that our approach outperforms the other approaches.
Constructing an ontology using a mass corpus begins with an automatic semantic relation extraction. A general method regards words appearing between terms as patterns which are used to extract semantic relations. However, previous approaches consider only one sentence to extract a pattern, so they cannot extract semantic relations for terms in different sentences. This paper proposes a semantic relation extraction method using pairs of patterns sharing a term, where each pattern is extracted using one of the seed term pair satisfying the target relation. In our experiments, we achieved the accuracy 83.75% improving previous methods by 7.5% in is-${\alpha}$ relation and the accuracy 83.75% improved by 5% in part-of relation. We also present a possibility of improving the recall by the relative recall.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.196-198
/
2001
문서의 내용을 대표하는 용어를 추출하기 위해 일반적으로 영어에서는 명사구를 색인하는 기법을 사용하지만 주제어 추출의 관점에서 영어의 명사구가 한국어의 복합명사에 해당하기 때문에 한국어에서는 복합명사 색인 기법을 중요시하고 있다. 본 논문에서는 한글 문서에서 추출된 용어의 가중치를 결정하기 위하여 경험적인 방법에 따라 가중치를 계산하는 방법을 제안한다. 구체적인 가중치 계산 방법으로 용어 자체의 특성에 의한 가중치를 부여한 후에, 복합명사의 경계를 인식하여 띄어쓴 복합명사의 가중치를 조절하고, 다시 용어의 조사 유형에 따라 가중치를 재계산하는 방법을 제안한다. 신문기사에 대한 실험결과에 의하면 제안한 방법이 단순 출현빈도에 의한 주제어 추출 기법보다 정확도가 더 높았다.
Annual Conference on Human and Language Technology
/
2002.10e
/
pp.223-227
/
2002
자연언어 질의 문장으로부터 검색어로 사용될 질의어의 추출 및 질의어 가중치를 계산하기 위하여 질의 문장들의 유형을 분석하였으며, 질의어 구문의 특성에 따라 용어들의 가중치를 계산하는 방법을 제안하였다. 용어의 가중치를 부여할 때 띄어쓴 복합명사와 접속 관계 등에 의해 연결된 명사구는 질의어 가중치를 동등하게 적용할 필요가 있다. 질의 문장에서 가중치가 동등하게 적용되는 명사구를 인식하기 위한 목적으로 구현된 명사구 chunking을 수행한 후에 각 용어들에 대한 질의어 가중치를 계산한다. 질의어 가중치를 계산하기 위하여 용어의 유형, 질의 구문의 특성, 문서 유형을 지칭하는 용어, 조사 유형, 용어의 길이 등에 따라 가중치를 조절하는 방법을 사용한다. 용어유형에 의한 가중치 계산은 추출된 용어의 품사 정보와 전문 용어 사전, 부사성 명사 사전을 이용하였다.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
2002.05a
/
pp.300-304
/
2002
한국여성의 외의용 의류소재에 주관적인 태를 조사하기 위하여 계절별(춘하, 추동)로 총 230여 종의 직물을 수집하고, 1차로 87종의 직물에 대하여 20, 30대 전문가에게 태에 관한 용어를 9가지 조사동작을 통하여 수집하였다. 수집한 용어를 의미별로 추출하여 정리하였고, 태를 수집하기 위한 동작에 따른 용어의 차이를 비교하였다.
정보검색(Information retrieval) 및 텍스트 분석을 위해 수집하는 비정형 데이터 즉, 자연어를 전처리하는 과정 중 하나인 불용어(Stopword) 제거는 모델의 품질을 높일 수 있는 쉽고, 효과적인 방법 중에 하나이다. 특히 다양한 텍스트 문서에 잠재된 주제를 추출하는 기법인 토픽모델링의 경우, 너무 오래되거나, 수집된 문서의 도메인이나 성격과 무관한 불용어의 제거로 인해, 해당 토픽 모델에서 학습되어 생성된 주제 관련 단어들의 일관성이 떨어지게 된다. 따라서 분석가가 분류된 주제를 올바르게 해석하는데 있어 많은 어려움이 따르게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해 일반적으로 사용되는 표준 불용어 대신 관련 도메인 문서로부터 추출되는 점별 상호정보량(PMI: Pointwise Mutual Information)을 이용하여 불용어를 자동으로 생성해주는 기법을 제안한다. 생성된 불용어와 표준 불용어를 통해 토픽 모델의 품질을 혼잡도(Perplexity)로써 측정한 결과, 본 논문에서 제안한 기법으로 생성한 30개의 불용어가 421개의 표준 불용어보다 더 높은 모델 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.