• Title/Summary/Keyword: 용어추출

Search Result 365, Processing Time 0.03 seconds

Term Extraction and Ranking for Building Term Dictionary (전문용어사전 구축을 위한 전문용어 추출 및 순위화)

  • Koo, Hee-Kwan;Jung, Han-Min;Lee, Byeong-Hee;Sung, Won-Kyung
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.745-748
    • /
    • 2005
  • 전문용어는 특정 분야의 전문가 사이에서 통용되는 표현 매체이며, 일반용어에 비해 생성과 소멸의 주기가 짧은 특징을 가지고 있다. 이런 특징 때문에 일반용어 사전구축과 달리 전문용어 사전을 구축하기 위해서는 신속한 대응전략이 필요하다. 이를 위해 본 논문에서는 전문용어 사전 구축을 위한 다음과 같은 두 단계의 과정을 제안한다. 우선 형태소 후처리와 결합규칙을 이용하여 1,200만 어절의 신문 말뭉치로부터 단일어 10만과 복합어 30만의 용어후보를 추출하고, 고빈도 용어 후보 6만개를 선별해 용어지배지수(Term Dominance Value)라는 개념을 도입하여 전문용어를 선정한다. 실험을 통해 용어지배지수 순위와 누적빈도순위 및 최근연도 순위를 비교한 결과 본 논문에서 제안한 용어지배지수가 전문용어 활용도를 나타내는 훌륭한 지표역할을 할 수 있음을 확인할 수 있었다.

  • PDF

Development of the Algorithm for the Automatic Extraction of Broad Term (상위어 자동추출 알고리즘 개발)

  • 최유미;사공철
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1998.08a
    • /
    • pp.227-230
    • /
    • 1998
  • 문헌정보학분야의 용어사전을 이용한 자동시소러스 구축을 위한 첫단계로$\ulcorner$문헌정보학 용어사전$\lrcorner$ MRD를 구성하고 이를 이용하여 상위어 자동 추출알고리즘을 개발하였다. MRD구성시 전처리과정을 통하여 상위어 추출에 불필요한 정보가 수록되는 것을 방지하였다. 상위어 추출을 위한 알고리즘 개발은 무작위 표본추출을 통하여 $\ulcorner$문헌정보학 용어사전$\lrcorner$에 기술된 문장의 구문적 특성을 분석한 후, 이 구문정보를 이용하여 수행하였다. 본 연구에서 제시된 알고리즘의 효율성 평가결과 89.4%의 정확도를 보였다.

  • PDF

An Efficient Terminology Clustering Method Using Datamining Technique (데이타마이닝 기법을 이용한 효율적인 전문 용어 클러스터링)

  • 이정화;남상엽;문현정;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • 2000.11a
    • /
    • pp.210-215
    • /
    • 2000
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 일반적인 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 대량의 문서로부터 유용한 지식 정보를 찾기 위하여 의미적으로 연관된 전문 용어들끼리 클러스터링 하기 위한 방법을 제안하였다. 학술 논문을 대상으로 전문 용어를 추출하여 관련된 용어들끼리 클러스터를 구성하는 실험을 통하여 제안된 방법의 효율성을 보였다.

  • PDF

Terminological Paraphrase Extraction with Ranking Combination (랭킹 결합에 의한 기술용어 패러프레이즈 추출)

  • Choi, Sung-Pil;Cho, Min-Hee;Jung, Hanmin;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.175-180
    • /
    • 2012
  • 기술용어 패러프레이즈 (Terminological Paraphrase, TP)는 학술 문헌 내에서 기술 용어의 개념 및 정의를 다른 형태로 풀어서 알기 쉽게 서술적 문구 (descriptive expression) 를 의미한다. 이러한 TP들에 대한 효율적인 식별과 추출은 학술 정보에 대한 개념적 접근이나 학술 정보 검색의 재현율 향상에 매우 중요하다. 본 논문은 생명 공학 분야의 논문에 나타나는 다양한 형태의 TP들을 효율적으로 추출하기 위한 정보 검색 기반의 추출 방법론을 제시하고 총 여섯 가지의 추출 랭킹 모델을 기반으로 이를 결합함으로써 TP추출의 확장 가능성에 대한 실험적 연구를 수행한다. 실험 결과, 활용된 랭킹 모델이 서로 상호 보완적인 관계에 있음을 알 수 있었으며, 랭킹 결합에 의한 성능 개선 효과를 얻을 수 있었다.

  • PDF

Representative Keyword Extraction from Few Documents through Fuzzy Inference (퍼지추론을 이용한 소수 문서의 대표 키워드 추출)

  • 노순억;김병만;허남철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.837-843
    • /
    • 2001
  • In this work, we propose a new method of extracting and weighting representative keywords(RKs) from a few documents that might interest a user. In order to extract RKs, we first extract candidate terms and them choose a number of terms called initial representative keywords (IRKs) from them through fuzzy inference. Then, by expanding and reweighting IRKs using term co-occurrence similarity, the final RKs are obtained. Performance of our approach is heavily influenced by effectiveness of selection method of IRKs so that we choose fuzzy inference because it is more effective in handling the uncertainty inherent in selecting representative keywords of documents. The problem addressed in this paper can be viewed as the one of calculating center of document vectors. So, to show the usefulness of our approach, we compare with two famous methods - Rocchio and Widrow-Hoff - on a number of documents collections. The result show that our approach outperforms the other approaches.

  • PDF

Semantic Relation Extraction using Pattern Pairs Sharing a Term (용어를 공유하는 패턴 쌍을 이용한 의미 관계 추출)

  • Kim, Se-Jong;Lee, Yong-Hun;Lee, Jong-Hyeok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.221-225
    • /
    • 2009
  • Constructing an ontology using a mass corpus begins with an automatic semantic relation extraction. A general method regards words appearing between terms as patterns which are used to extract semantic relations. However, previous approaches consider only one sentence to extract a pattern, so they cannot extract semantic relations for terms in different sentences. This paper proposes a semantic relation extraction method using pairs of patterns sharing a term, where each pattern is extracted using one of the seed term pair satisfying the target relation. In our experiments, we achieved the accuracy 83.75% improving previous methods by 7.5% in is-${\alpha}$ relation and the accuracy 83.75% improved by 5% in part-of relation. We also present a possibility of improving the recall by the relative recall.

Term Weighting Method by Postposition and Compound Noun Recognition (조사 유형 및 복합명사 인식에 의한 용어 가중치 부여 기법)

  • 강승식;이하규;손소현;홍기채;문병주
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.196-198
    • /
    • 2001
  • 문서의 내용을 대표하는 용어를 추출하기 위해 일반적으로 영어에서는 명사구를 색인하는 기법을 사용하지만 주제어 추출의 관점에서 영어의 명사구가 한국어의 복합명사에 해당하기 때문에 한국어에서는 복합명사 색인 기법을 중요시하고 있다. 본 논문에서는 한글 문서에서 추출된 용어의 가중치를 결정하기 위하여 경험적인 방법에 따라 가중치를 계산하는 방법을 제안한다. 구체적인 가중치 계산 방법으로 용어 자체의 특성에 의한 가중치를 부여한 후에, 복합명사의 경계를 인식하여 띄어쓴 복합명사의 가중치를 조절하고, 다시 용어의 조사 유형에 따라 가중치를 재계산하는 방법을 제안한다. 신문기사에 대한 실험결과에 의하면 제안한 방법이 단순 출현빈도에 의한 주제어 추출 기법보다 정확도가 더 높았다.

  • PDF

Term Weighting Method for Natural Language Query Sentence (자연언어 질의 문장의 용어 가중치 부여 기법)

  • Kang, Seung-Shik;Lee, Ha-Gyu;Son, So-Hyun;Moon, Byung-Joo;Hong, Gi-Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.223-227
    • /
    • 2002
  • 자연언어 질의 문장으로부터 검색어로 사용될 질의어의 추출 및 질의어 가중치를 계산하기 위하여 질의 문장들의 유형을 분석하였으며, 질의어 구문의 특성에 따라 용어들의 가중치를 계산하는 방법을 제안하였다. 용어의 가중치를 부여할 때 띄어쓴 복합명사와 접속 관계 등에 의해 연결된 명사구는 질의어 가중치를 동등하게 적용할 필요가 있다. 질의 문장에서 가중치가 동등하게 적용되는 명사구를 인식하기 위한 목적으로 구현된 명사구 chunking을 수행한 후에 각 용어들에 대한 질의어 가중치를 계산한다. 질의어 가중치를 계산하기 위하여 용어의 유형, 질의 구문의 특성, 문서 유형을 지칭하는 용어, 조사 유형, 용어의 길이 등에 따라 가중치를 조절하는 방법을 사용한다. 용어유형에 의한 가중치 계산은 추출된 용어의 품사 정보와 전문 용어 사전, 부사성 명사 사전을 이용하였다.

  • PDF

A Study on the Terminology of Subjective Hand of Fabrics (의류소재의 주관적 태를 측정하는 용어 추출에 관한 연구)

  • 유효선;김은애;김종준;이미식;오경화
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.300-304
    • /
    • 2002
  • 한국여성의 외의용 의류소재에 주관적인 태를 조사하기 위하여 계절별(춘하, 추동)로 총 230여 종의 직물을 수집하고, 1차로 87종의 직물에 대하여 20, 30대 전문가에게 태에 관한 용어를 9가지 조사동작을 통하여 수집하였다. 수집한 용어를 의미별로 추출하여 정리하였고, 태를 수집하기 위한 동작에 따른 용어의 차이를 비교하였다.

  • PDF

Automatic Generating Stopword Methods for Improving Topic Model (토픽모델의 성능 향상을 위한 불용어 자동 생성 기법)

  • Lee, Jung-Been;In, Hoh Peter
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.869-872
    • /
    • 2017
  • 정보검색(Information retrieval) 및 텍스트 분석을 위해 수집하는 비정형 데이터 즉, 자연어를 전처리하는 과정 중 하나인 불용어(Stopword) 제거는 모델의 품질을 높일 수 있는 쉽고, 효과적인 방법 중에 하나이다. 특히 다양한 텍스트 문서에 잠재된 주제를 추출하는 기법인 토픽모델링의 경우, 너무 오래되거나, 수집된 문서의 도메인이나 성격과 무관한 불용어의 제거로 인해, 해당 토픽 모델에서 학습되어 생성된 주제 관련 단어들의 일관성이 떨어지게 된다. 따라서 분석가가 분류된 주제를 올바르게 해석하는데 있어 많은 어려움이 따르게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해 일반적으로 사용되는 표준 불용어 대신 관련 도메인 문서로부터 추출되는 점별 상호정보량(PMI: Pointwise Mutual Information)을 이용하여 불용어를 자동으로 생성해주는 기법을 제안한다. 생성된 불용어와 표준 불용어를 통해 토픽 모델의 품질을 혼잡도(Perplexity)로써 측정한 결과, 본 논문에서 제안한 기법으로 생성한 30개의 불용어가 421개의 표준 불용어보다 더 높은 모델 성능을 보였다.