• Title/Summary/Keyword: 용어추출

Search Result 365, Processing Time 0.026 seconds

A Study on the Correlation between the Appearance Frequency of Author Keyword and the Number of Citation in the Humanities and Social Science Journal Articles of the Korea Citation Index (KCI) (인문학 및 사회과학 분야 국내 학술논문의 저자키워드 출현빈도와 피인용횟수의 상관관계 연구)

  • Ko, Young Man;Song, Min-Sun;Kim, Bee-Yeon;Min, Hye-Ryoung
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.2
    • /
    • pp.227-243
    • /
    • 2013
  • The purpose of this study is to verify the correlation between the appearance frequency of author keyword and the number of citation in journal articles. In this study, we were trying to develop a methodology that can select the term having semantic relation with other terms and higher utilization to build a structured scientific glossary. In order to achieve this purpose, we analyzed the number of citation and the author keyword of the humanities and social science journal articles of the Korea Citation Index (KCI) from 2007 to 2011. This study found a correlation between appearance frequency of author keyword and the number of citation of the journal articles, with higher appearance frequency of author keyword of the journal articles being more cited.

Design of Knowledge Model of Nursing Diagnosis based on Ontology (온톨로지에 기반한 간호진단 지식모델의 설계)

  • Lee, In-Keun;Kim, Hwa-Sun;Lee, Sung-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.468-475
    • /
    • 2012
  • Nurses have performed their nursing practice according to the standard guidelines such as NANDA, NIC, and NOC, and recorded the information on nursing process into EMR system. In particular, NANDA, nursing diagnosis taxonomy, has difficulty expressing nursing diagnosis in detail because it represents abstract concepts of nursing diagnosis. So, the hospitals in KOREA have developed and used the list of nursing diagnosis on their own without referring the international standard terminologies, and it caused the delay of computerization of nursing records. Therefore, we proposed a ontology development methodology on nursing diagnosis based on NANDA and SNOMED-CT. The developed ontology, systematically developed with the frequently used nursing diagnosis terminologies in each hospital, based on the proposed methodology enables knowledge expansion and interoperable exchange of nursing records between EMR systems. We developed an ontology using the 112 nursing diagnosis terms defined by extracting and refining information on nursing diagnosis recorded in Kyungpook National University Hospital. We also confirmed the content validity and the usefulness of the developed ontology through expert assessment and experiment.

Research Outcomes and Limitations of Records and Archives Organization in Korea (국내 기록조직 연구의 성과와 과제)

  • Lee, Eun-Ju;Rho, Jee-Hyun
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.20 no.4
    • /
    • pp.129-146
    • /
    • 2020
  • This study aims to investigate the outcomes and limitations of research studies on records and archives organization published in Korea. In particular, it will serve as an in-depth examination of the contribution of this area of research to the improvements and changes in the country's records management field. To this end, 150 journal articles related to the records and archives organization were gathered. After extracting refined keywords from the titles and author-assigned keywords, terminology analysis and contents analysis were conducted. On the one hand, terminology analysis (frequency and network analysis) identified frequently discussed topics and the relationships between them. On the other hand, through content analysis, the study revealed the detailed contents regarding the two main topics and their meanings.

A Comparative Study on Clustering Methods for Grouping Related Tags (연관 태그의 군집화를 위한 클러스터링 기법 비교 연구)

  • Han, Seung-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.43 no.3
    • /
    • pp.399-416
    • /
    • 2009
  • In this study, clustering methods with related tags were discussed for improving search and exploration in the tag space. The experiments were performed on 10 Delicious tags and the strongly-related tags extracted by each 300 documents, and hierarchical and non-hierarchical clustering methods were carried out based on the tag co-occurrences. To evaluate the experimental results, cluster relevance was measured. Results showed that Ward's method with cosine coefficient, which shows good performance to term clustering, was best performed with consistent clustering tendency. Furthermore, it was analyzed that cluster membership among related tags is based on users' tagging purposes or interest and can disambiguate word sense. Therefore, tag clusters would be helpful for improving search and exploration in the tag space.

A Study on Data Cleansing Techniques for Word Cloud Analysis of Text Data (텍스트 데이터 워드클라우드 분석을 위한 데이터 정제기법에 관한 연구)

  • Lee, Won-Jo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.745-750
    • /
    • 2021
  • In Big data visualization analysis of unstructured text data, raw data is mostly large-capacity, and analysis techniques cannot be applied without cleansing it unstructured. Therefore, from the collected raw data, unnecessary data is removed through the first heuristic cleansing process and Stopwords are removed through the second machine cleansing process. Then, the frequency of the vocabulary is calculated, visualized using the word cloud technique, and key issues are extracted and informationalized, and the results are analyzed. In this study, we propose a new Stopword cleansing technique using an external Stopword set (DB) in Python word cloud, and derive the problems and effectiveness of this technique through practical case analysis. And, through this verification result, the utility of the practical application of word cloud analysis applying the proposed cleansing technique is presented.

Verification of Transliteration Pairs Using Distance LSTM-CNN with Layer Normalization (Distance LSTM-CNN with Layer Normalization을 이용한 음차 표기 대역 쌍 판별)

  • Lee, Changsu;Cheon, Juryong;Kim, Joogeun;Kim, Taeil;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.76-81
    • /
    • 2017
  • 외국어로 구성된 용어를 발음에 기반하여 자국의 언어로 표기하는 것을 음차 표기라 한다. 국가 간의 경계가 허물어짐에 따라, 외국어에 기원을 두는 용어를 설명하기 위해 뉴스 등 다양한 웹 문서에서는 동일한 발음을 가지는 외국어 표기와 한국어 표기를 혼용하여 사용하고 있다. 이에 좋은 검색 결과를 가져오기 위해서는 외국어 표기와 더불어 사람들이 많이 사용하는 다양한 음차 표기를 함께 검색에 활용하는 것이 중요하다. 음차 표기 모델과 음차 표기 대역 쌍 추출을 통해 음차 표현을 생성하는 기존 방법 대신, 본 논문에서는 신뢰할 수 있는 다양한 음차 표현을 찾기 위해 문서에서 음차 표기 후보를 찾고, 이 음차 표기 후보가 정확한 표기인지 판별하는 방식을 제안한다. 다양한 딥러닝 모델을 비교, 검토하여 최종적으로 음차 표기 대역 쌍 판별에 특화된 모델인 Distance LSTM-CNN 모델을 제안하며, 제안하는 모델의 Batch Size 영향을 줄이고 학습 시 수렴 속도 개선을 위해 Layer Normalization을 적용하는 방법을 보인다.

  • PDF

An Informetric Analysis on Intellectual Structures with Multiple Features of Academic Library Research Papers (복수 자질에 의한 지적 구조의 계량정보학적 분석연구: 국내 대학도서관 분야 연구논문을 대상으로)

  • Choi, Sang-Hee
    • Journal of the Korean Society for information Management
    • /
    • v.28 no.2
    • /
    • pp.65-78
    • /
    • 2011
  • The purpose of this study is to identify topic areas of academic library research using two informetric methods; word clustering and Pathfinder network. For the data analysis, 139 articles published in major library and information science journals from 2005 to 2009 were collected from the Korean Science Citation Index database. The keywords that represent research topics were gathered from two sections: an and titles in references. Results showed that reference titles usefully represent topics in detail, and combinings and reference titles can produce an expanded topic map.

Analysis of Term Ambiguity based on Genetic Algorithm (유전자 알고리즘 기반 용어 중의성 분석)

  • Kim, Jeong-Joon;Chung, Sung-Taek;Park, Jeong-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.131-136
    • /
    • 2017
  • Recently, with the development of Internet media, many document materials have become exponentially increasing on the web. These materials are described, and the information on what is the most by this text are classified according. However, the text has meant that many have room for ambiguous interpretation must look at it from various angles in order to interpret them correctly. In conventional classification methods it was simply a classification only have the appearance of the text. In this paper, we analyze it in terms genetic algorithm and local preserving based techniques and implemented a clustering system fragmentation them. Finally, the performance of this paper was evaluated based on the implementation results compared to traditional methods.

Automatic English MeSH keywords assignment to Korean medical documents - spacing variant effect (한국어 의학 문서에 대한 영문 MeSH 키워드의 자동 부여 - 띄어쓰기 변이 처리 효과를 중심으로)

  • Lee, Jae-Sung;Kim, Mi-Suk;Lee, Young-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.82-89
    • /
    • 2004
  • 본 논문에서는 한국어 의학 논문의 요약문으로부터 자동 영문 MeSH 키워드 제안 시스템을 소개하고, 띄어쓰기 변이(spacing variant) 문제를 해결할 수 있는 방법을 제안한다. 띄어쓰기 변이란 표준 한글 맞춤법에 비해 다르게 띄어쓰기된 것을 말한다. 이를 위해 시소러스에는 생성 가능한 모든 띄어쓰기 변이 대신에 최대 띄어쓰기 어구만을 저장하고, 문서에서 K-MeSH 용어를 찾기 위해 음절단위 부분문자열 검색을 사용한다. 이 방법으로 한국어 의학 논문의 요약문에서 K-MeSH 용어를 추출한 후, TF-IDF 순위 함수를 이용하여 상위 10위내의 키워드를 저자가 선정한 영문 키워드와 비교한 결과 58%가 일치하였다. 이는 기존 방법에 비해 42%정도의 시소러스 크기가 축소되었고, 상위 10위내에서 영문 MeSH 키워드 추천 재현률이 약 7.8% 증가한 것으로 효과적인 방법임을 보여주었다.

  • PDF

Design of WWW IR System Based on Keyword Clustering Architecture (색인어 말뭉치 처리를 기반으로 한 웹 정보검색 시스템의 설계)

  • 송점동;이정현;최준혁
    • The Journal of Information Technology
    • /
    • v.1 no.1
    • /
    • pp.13-26
    • /
    • 1998
  • In general Information retrieval systems, improper keywords are often extracted and different search results are offered comparing to user's aim bacause the systems use only term frequency informations for selecting keywords and don't consider their meanings. It represents that improving precision is limited without considering semantics of keywords because recall ratio and precision have inverse proportion relation. In this paper, a system which is able to improve precision without decreasing recall ratio is designed and implemented, as client user module is introduced which can send feedbacks to server with user's intention. For this purpose, keywords are selected using relative term frequency and inverse document frequency and co-occurrence words are extracted from original documents. Then, the keywords are clustered by their semantics using calculated mutual informations. In this paper, the system can reject inappropriate documents using segmented semantic informations according to feedbacks from client user module. Consequently precision of the system is improved without decreasing recall ratio.

  • PDF