• Title/Summary/Keyword: 용어추출

Search Result 365, Processing Time 0.031 seconds

Ontology-Based Document Classification (온톨로지 기반 웹 문서 분류)

  • 송무희;임수연;민도식;강동진;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.535-537
    • /
    • 2003
  • 본 논문에서는 웹 문서들이 가지는 용어 정보들과 어휘들의 의미구조를 계층적 형태로 표현한 온틀로지 기반 자동 문서분류 방법을 제안한다. 문서 분류는 문서들을 가장 잘 표현할 수 있는 자질들을 점하고 이러한 자질들을 통해 미리 정의된 2개 이상의 카테고리에 문서의 내용을 파악하여 가장 관련이 있는 카테고리로 할당하는 것이다. 본 논문에서는 웹 문서에서 추출한 용어 정보들의 유사도와 온톨로지 카테고리의 유사도를 계산하여 웹 문서를 분류하며, 문서 분류를 위한 실험데이터나 학습과정 없이 바로 실시간으로 문서분류가 이루어지며, 결과적으로 문서들이 가지는 고유한 의미와 관계의 식별을 통하여 보다 더 정확하게 문서분류를 가능하게 해준다.

  • PDF

Semantic Classification of Web Pages using Ontology Concept Structure (온톨로지의 개념구조에 의한 웹페이지의 의미적 분류)

  • Song, Mu-Hee;Lim, Soo-Yeon;Park, Seong-Bae;Kang, Dong-Jin;Lee, Sang-Jo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.487-489
    • /
    • 2005
  • 본 논문에서는 온톨로지의 개념구조를 이용한 웹페이지의 의미적 분류방법을 제안한다. 웹 문서들이 가지는 용어 정보들과 어휘들 간의 개념 구조를 파악하여 온톨로지를 확장시키면서 이를 문서분류에 적용하여 의미적 분류가 이루어지게 한다. 문서 분류는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고 이러한 자질들을 통해 미리 정의된 2개 이상의 카테고리에 문서의 내용을 파악하여 가장 관련이 있는 카테고리로 할당하는 것이다. 본 논문에서는 웹 문서에서 추출한 용어 정보들의 유사도와 온톨로지 카테고리의 유사도를 계산하여 웹 문서를 분류하여 문서 분류를 위한 실험데이터나 학습과정 없이 바로 실시간으로 문서분류가 이루어지며, 결과적으로 온톨로지와 문서들이 가지는 고유한 의미와 관계의 식별을 통하여 보다 더 정확하게 문서분류를 가능하게 해준다.

  • PDF

An Algorithm of Documents Classification and Query Extension using Fuzzy Function (퍼지 함수에 의한 질의어 확장과 문서 분류 알고리즘)

  • Eun, Hye-Ju;Ha, Yan;Kim, Yong-Sung
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.3
    • /
    • pp.272-284
    • /
    • 2001
  • 웹 기반 검색 시스템에서사용자의 관심이 많은 문서를 선별하여 제공하기 위해 프로파일이나 시소러스에 관한 연구가 이루어지고 있다. 그러나, 프로파일이나 시소러스를 구축하고 유지보수 하는데 많은 시간과 노력이 필요하다. 특히 구축된 시소러스에 대해 구조화 및 적합성의 문제가 있다. 따라서, 이러한 문제점을 극복하고자 본 논문에서는 문서에서 추출한 용어 빈도를 문서에서 용어의 중요 정도로 사상시키기 위해 시그모이드 멤버 쉽 함수를 적용한다. 또한, 이 중요 정도에 따라 질의어를 확장하고 의미적으로 연결된 문서를 동일한 문서 집단으로 분류할 수 있는 알고리즘을 제안하여 사용자의 선호도가 반영된 문서를 선별하고 제공하고자 한다.

  • PDF

Implementation of the Automatic Indexing and New Term Processing System for Game Information Retrieval (게임 정보검색을 위한 자동색인 및 신조어 처리 시스템 구현)

  • Lee, Sang-Joon;Ryu, Keun-Ho
    • Annual Conference of KIPS
    • /
    • 2001.04a
    • /
    • pp.51-54
    • /
    • 2001
  • 오늘날 국내외에 인터넷 보급의 대중화가 점차 확대되고 네트워크을 이용하는 게임의 증가에 따라 게임에 관련된 웹 문서에 대한 사용자의 요구가 증가되고 있다. 기존의 수작업에 의한 색인 방식은 많은 전문인력, 시간, 경비등을 필요로 하기 때문에, 기하급수적으로 증가하는 웹 상의 정보를 처리하기에는 이미 그 한계에 이른 실정이다. 이러한 문제점의 해결을 위해 컴퓨터를 이용한 자동색인 시스템의 개발은 매우 중요하고 시급하다. 더구나 게임 분야에서 있어 신조어는 너무나 급속히 생성되고 있다. 따라서 이러한 신조어 처리는 효과적인 자동색인을 위한 중요한 요소이다. 이 논문에서는 사용자들에게 보다 적합하고 안정적인 게임 정보를 제공하기 위해 게임 용어 사전을 이용한 자동색인과 신조어 처리 시스템을 설계, 구현한다. 자동색인 및 신조어 처리를 위해 게임용어사전, TF-IDF, n-gram 추출법을 이용한다.

  • PDF

Offering system for major article Using Text Mining and Data Mining (텍스트마이닝과 데이터마이닝을 이용한 주요기사 제공 시스템)

  • Song, Sung-Mook;Ryu, Joon-Suk;Kim, Ung-Mo
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.733-734
    • /
    • 2009
  • 현대사회에서 인터넷의 비약적인 발전과 빠른 보급으로 우리가 접할 수 있는 정보의 양이 늘어나고 이들 중에서 필요한 정보만을 얻어내기에는 쉽지 않다. 특히 비구조적이고 정형화되지 않은 텍스트 데이터인 기사들을 텍스트마이닝을 이용하여 기사 헤드라인을 용어 단위로 구분하여 추출하고 데이터마이닝의 연관 규칙을 적용하여 빈발항목의 지지도와 용어간의 연관성을 통해 기사의 내용에 효과적으로 접근하는 시스템을 제안하고자 한다.

Analysis and evaluation of Health Functional Food(HFF) brand using Instagram post data (인스타그램 게시물 데이터를 활용한 건강기능식품 브랜드 분석 및 평가)

  • Yoon, Hyeon-Ju;Shin, Jae-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.533-534
    • /
    • 2021
  • 최근 소셜 네트워크 서비스(SNS)를 통한 건강기능식품 과대광고 적발이 증가하면서 SNS를 통해 브랜드를 선택함에 있어 신뢰도가 소비자에게 중요한 요소가 된다. 본 논문에서는 인스타그램의 해시태그를 이용해 게시글을 크롤링 하여 수집된 게시물 데이터를 가공 및 분석한다. 불용어 사전을 구축해 불용어를 제거해준 뒤 브랜드 추출을 진행하고, 건강기능식품 브랜드 5개에 대한 게시글 데이터를 수집한다. 5개 브랜드의 신뢰도 측정을 위해 게시글, 해시태그, 계정명을 분석기준으로 삼아 라벨링 처리를 한다. 라벨링 된 열을 통해 절대적 수치로 점수를 부여하여 백분율로 점수를 표현한다. 신뢰도 점수와 더불어 브랜드의 고객 참여도 건수를 같이 명시해 준다.

  • PDF

Procedural Entity Extraction for Procedural Knowledge on Medline Abstracts (의료 문헌에서의 절차적 지식 추출을 위한 단위 절차 추출 연구)

  • Song, Sa-Kwang;Oh, Heung-Seon;Choi, Yoon-Jung;Jang, He-Ju;Myaeng, Sung-Hyon;Choi, Sung-Pil;Choi, Yun-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.154-157
    • /
    • 2011
  • 본 연구는 2인의 전문의와 함께 의료 문헌의 초록을 분석하여 의료문서에서의 절차적 지식을 모델링하고 텍스트 마이닝 기법을 적용하여 절차적 지식을 추출하는 방법론에 대해 기술한다. 절차적 지식은 목적과 해법의 묶음으로, 해법은 다시 단위 절차 지식의 네트워크로 정의 하였고, 목적과 해법 정보 추출과 단위 절차 지식의 구성요소인 대상/행위/방법 개체를 인식하기 위해, 품사태깅, 구문분석, 술어-논항구조(Predicate-Argument Structure), 온톨로지 용어 매핑 정보 등에 기반한 기계학습 방법을 사용하였다. 실험을 위해 전문의와 함께 위함과 척추질환에 대한 1309 문서에 절차적 지식 태깅을 수행하였고, 이 문서 집합을 기반으로 목적/해법 추출 작업과 단위 절차 지식(대상질병/행위/적용방법) 추출 실험을 수행하여, 각각 82% 와 63%의 F-measure 값을 얻을 수 있었다.

Concept-Based Method for Noun Phrase Indexing Using Syntactic Analysis and Co-occurence Information (구문분석과 공기정보를 이용한 개념 기반 명사구 색인 방법)

  • Lee, Hyun-A;Lee, Jong-Hyeok;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.3-7
    • /
    • 1995
  • 한국어에서의 명사구 색인을 위한 기존의 방법들은 주로 간단한 규칙을 이용하여 왔고 그 결과 문장에 존재하는 모든 명사구를 추출하지 못했다. 이를 해결하기 위하여 본 논문에서는 개념 기반 명사구 색인 방법을 제안한다. 하나의 문장은 하나 이상의 개념으로 이루어져 있으므로, 명사구 추출은 개념을 고려하여 이루어져야 바람직하다 문장은 구문적으로 하나 이상의 내포문으로 이루어져 있다. 일반적으로 내포문 단위 내의 용어들이 나타내는 각각의 개념들은 서로 높은 연관성을 가진다. 그러므로 문장이 가지는 개념의 상이성을 내포문의 개념 상이성으로 축소할 수 있다. 문장을 내포문 단위로 분할하기 위하여 의존 문법을 기반한 구문분석과 공기정보를 이용한다. 특히 공기정보는 원거리 의존관계(long distance dependency)를 결정하여 한 내포문에 속함을 밝혀내는 데 도움을 준다. 이러한 내포문 내의 의존관계를 이용하여 명사구를 추출한다.

  • PDF

A Study for Keyword Extraction Method (키워드 추출 기법에 관한 연구)

  • Shin, Seong-Yoon;Jeong, Kyong-Taek;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.463-466
    • /
    • 2009
  • 본 논문에서는 대량의 문제를 자동으로 분류하기 위하여 비감독 학습 기법에 의해 카테고리별 키워드를 구성하기 위한 방법을 제안하였다. 제안된 방법에서는 사전에 문제를 분류하지 않고 키워드를 추출하기 위하여 데이터마이닝 기법 중의 하나인 연관 규칙 탐사 알고리즘을 이용하였다. 먼저, 각 카테고리를 대표하는 핵심 키워드를 선정하고, 연관 규칙 탐사 알고리즘을 적용하여 각 핵심 키워드와 관련된 용어 집합을 추출한다.

  • PDF

SINDI-WALKS: A Workbench for Scientific Intelligence Discovery (SINDI-WALKS: 과학기술지식발견 워크벤치)

  • Choi, Sung-Pil;Choi, Yoon-Soo;Chun, Hong-Woo;Jeong, Chang-Hoo;Song, Sa-Kwang;Jung, Han-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.279-281
    • /
    • 2012
  • 본 논문은 과학 기술 분야 학술 정보에 내재된 기술 지식을 효과적으로 추출하기 위한 시스템인 SINDI-WALKS를 소개한다. 이 시스템은 학술 정보에 자주 등장하며 내용 전개에 핵심적인 역할을 수행하는 PLOT, 즉 인명, 지명, 기관명, 그리고 기술용어를 자동으로 인식하고 이들 간의 의미적 연관 관계를 추출할 수 있는 통합 지원 도구이다. 논문에서 소개하는 다양한 지원 도구들을 바탕으로 기술 지식추출의 성능을 특정 분야 혹은 자원에 최적화할 수 있는 기반을 마련할 수 있다.