법률 문서는 일반 사용자가 이해하기 어려운 용어로 이루어져 있고 특히 장문의 문서가 많아 법률시스템에 종사하는 종사자들 또한 많은 양의 문서를 읽기가 어려운 현실이다. 이에 문서 요약 방법중 딥러닝 기반의 사전학습 모델을 적용한 추출요약기반, 생성요약 방법론과 딥러닝 이전의 핵심문장 추출 방법론을 비교하여 법률용어의 요약성능에 대한 비교 평가를 수행하고자 하며 추후 연구과제로 법률문서에 특화된 요약 모델을 만들어보고자 한다.
기존의 검색엔진은 검색결과를 적합도 순서로 나열하여 사용자가 원하는 문서를 찾는데 어려움이 있다. 이러한 문제의 해결책으로 검색결과 문서에 대해 자동 클러스터링을 수행하여 문서 내용이 유사한 문서가 하나의 클러스터내에 존재하도록 한다. 본 논문에서는 검색 결과 문서의 클러스터링에서 필요한 디스크립터 추출 방안을 제안한다. 각 클러스터 내에서 디스크립터를 추출하기 위해 정보검색의 색인과정에서 사용하는 용어 가중치 계산 방법을 이용한다.
Terms are linguistic realization of technical concepts. Term constituents are important elements used for representing the concept. Since many new terms are created from the modification or combination of existing constituents, it is important to analyze term constituents for understanding the concept of the term. It means that term constituents offer clues for understanding the concept of terms. However, there are a couple of difficulties in matching concept unit and term constituents such as mismatching between a term constituent and a concept unit, homonym of term constituents and synonym of term constituents. To solve them, it is necessary to recognize concept units of term constituents. In this paper, we define an English term constituent as the concept unit and use an alignment algorithm between English-Korean term constituents in order to recognize concept units of term constituents. By our alignment algorithm we recognize Korean term constituents corresponding to an English term constituent with about $93\%$ precision.
Park, Byeol-Na;Lee, Yoon-Kyeong;Ku, Ja-Eul;Hong, Young-Soo;Kim, Hak-Yong
The Journal of the Korea Contents Association
/
v.10
no.5
/
pp.427-435
/
2010
We extracted core terms by constructing scientific item networks from textbooks, analyzing their structures, and investigating the connected information and their relationships. For this research, we chose three high-school textbooks from different publishers for each three subjects, i.e, Science, Biology I and Biology II, to construct networks by linking scientific items in each sentence, where used items were regarded as nodes. Scientific item networks from all textbooks showed scare-free character. When core networks were established by applying k-core algorithm which is one of generally used methods for removing lesser weighted nodes and links from complex network, they showed the modular structure. Science textbooks formed four main modules of physics, chemistry, biology and earth science, while Biology I and Biology II textbooks revealed core networks composed of more detailed specific items in each field. These findings demonstrate the structural characteristics of networks in textbooks, and suggest core scientific items helpful for students' understanding of concept in Science and Biology.
Journal of the Korean Data and Information Science Society
/
v.26
no.2
/
pp.419-427
/
2015
Despite of correlation between climate changes and food-related information, it is still not easy for many users to get access to the information with interest. This study investigated how much climate change and food-related information are correlated with each other and how often they are exposed through frequency and correlation analysis on news articles on the internet portals. Through analysis on the frequency of climate change and food-related news articles, this study was able to figure out how often they are exposed at the same time by the internet news portals. In addition, a total of 59 correlation rules regarding the climate change and food-related vocabularies were derived from these news articles using the climate change and food-related glossaries. Then, a correlation between certain climate change-related and food-related words was analyzed in order to package the related words.
The Journal of the Convergence on Culture Technology
/
v.9
no.6
/
pp.935-940
/
2023
Most text data collected through web scraping for artificial intelligence and big data analysis is generally large and unstructured, so a purification process is required for big data analysis. The process becomes structured data that can be analyzed through a heuristic pre-processing refining step and a post-processing machine refining step. Therefore, in this study, in the post-processing machine refining process, the Korean dictionary and the stopword dictionary are used to extract vocabularies for frequency analysis for word cloud analysis. In this process, "user-defined stopwords" are used to efficiently remove stopwords that were not removed. We propose a methodology for applying the "thesaurus" and examine the pros and cons of the proposed refining method through a case analysis using the "user-defined stop word thesaurus" technique proposed to complement the problems of the existing "stop word dictionary" method with R's word cloud technique. We present comparative verification and suggest the effectiveness of practical application of the proposed methodology.
Journal of the Korean Society for information Management
/
v.27
no.3
/
pp.207-225
/
2010
Terms collected from theological dictionaries in English and the Scripture are used in order to construct conceptual relationships of theological thesaurus. Using the terms, equivalence relationships, hierarchical relationships, and associative relationships as the basic relationships in thesaurus are constructed. In equivalence relationships, Hebrew, Greek, and Latin terms are included as descriptors and in hierarchical relationships, generic, instance, whole-part, and polyhierarchical relationships are constructed. Also, there is no big difference in the kinds of conceptual relationships between this theological thesaurus and the thesauri of other subjects. Examples of Biblical Theology are showed. Because Biblical Theology has a strong point to view the Scripture and Protestantism on comprehensive perspective. In this context, one of the main feature in the theological thesaurus is that there are a lot of the allegorical terms. Typology, which is the core structure causes this result.
With the development of web, amount of information are generated in social web. Then many researchers are focused on the extracting and analyzing social issues from various social data. The proposed approach performed gathering the science data and analyzing with LDA algorithm. It generated the clusters which represent the social topics related to 'health'. As a result, we could deduce the relationship between science data and social issues.
Park, Sung-Hee;Hur, Jeung;Kim, Hyun-Jin;Jang, Myung-Gil
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.576-578
/
2003
본 논문에서는 이미지 검색을 위한 새로운 검색 기법을 제시한다. 기존의 특징기반 검색 기법이나 주석기반 검색 기법은 특징이나 주석에 대하여 색인 형태나 질의 형태가 동일하였다. 그러나, 제안하는 검색 기법은 위의 두 전형적인 검색기법을 혼합한 것으로, 텍스트로 질의하면 질의 텍스트를 질의처리를 통해 텍스트에 포함된 특징용어를 추출하고 특징용어를 이미지가 본질적으로 가지는 특징(color, shape, texture)으로 변환한 다음 그 특징을 질의로 이용하여 특징기반 검색을 하는 기법이다. 이러한 기법은 현재 사용자에게 친숙한 텍스트 질의를 유지할 수 있게 해 주며 앞으로 음성인식을 통한 음성 질의인터페이스가 적용될 경우 더욱 효과적으로 사용될 수 있을 것이다.
KIm, Jung-Jae;Lee, Jin-Bok;Min, Hye-Jin;Jung, Ji-Yong;Park, Jong-C.
Proceedings of the Korean Society for Bioinformatics Conference
/
2003.10a
/
pp.79-85
/
2003
본 논문은 대량의 생물의료분야 문서에서 단백질 이름을 자동으로 인식하고 각 단백질의 특성을 문서에서 자동으로 파악하여 기존의 온톨로지와 연계시키는 방법을 제안한다. 온톨로지 용어가 문서에서 다양한 형태로 발견되기 때문에, 이들을 논리적 표현으로 자동 변환하고, 문서에서 단백질의 특성을 설명하는 문장들을 추출 및 분석하여 온톨로지 용어의 논리적 표현과 비교하였다. 문서에서 단백질 특성을 인식할 때, 약어 처리 및 조응 현상 해결 등의 자연언어처리 기법을 이용하는 방법을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.