• Title/Summary/Keyword: 용어중요도

Search Result 29, Processing Time 0.029 seconds

Evaluation of English Term Extraction based on Inner/Outer Term Statistics

  • Kang, In-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.141-148
    • /
    • 2020
  • Automatic term extraction is to recognize domain-specific terms given a collection of domain-specific text. Previous term extraction methods operate effectively in unsupervised manners which include extracting candidate terms, and assigning importance scores to candidate terms. Regarding the calculation of term importance scores, the study focuses on utilizing sets of inner and outer terms of a candidate term. For a candidate term, its inner terms are shorter terms which belong to the candidate term as components, and its outer terms are longer terms which include the candidate term as their component. This work presents various functions that compute, for a candidate term, term strength from either set of its inner or outer terms. In addition, a scoring method of a term importance is devised based on C-value score and the term strength values obtained from the sets of inner and outer terms. Experimental evaluations using GENIA and ACL RD-TEC 2.0 datasets compare and analyze the effectiveness of the proposed term extraction methods for English. The proposed method performed better than the baseline method by up to 1% and 3% respectively for GENIA and ACL datasets.

Adjusting Weights of Single-word and Multi-word Terms for Keyphrase Extraction from Article Text

  • Kang, In-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.47-54
    • /
    • 2021
  • Given a document, keyphrase extraction is to automatically extract words or phrases which topically represent the content of the document. In unsupervised keyphrase extraction approaches, candidate words or phrases are first extracted from the input document, and scores are calculated for keyphrase candidates, and final keyphrases are selected based on the scores. Regarding the computation of the scores of candidates in unsupervised keyphrase extraction, this study proposes a method of adjusting the scores of keyphrase candidates according to the types of keyphrase candidates: word-type or phrase-type. For this, type-token ratios of word-type and phrase-type candidates as well as information content of high-frequency word-type and phrase-type candidates are collected from the input document, and those values are employed in adjusting the scores of keyphrase candidates. In experiments using four keyphrase extraction evaluation datasets which were constructed for full-text articles in English, the proposed method performed better than a baseline method and comparison methods in three datasets.

The Design and Implementation of Lewdness Site Detection System (음란 사이트 탐지 시스템의 설계 및 구현)

  • 최상필;김병만;이숙희;김주연;김경호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.196-198
    • /
    • 2000
  • 본 논문에서는 음란사이트를 효과적으로 탐지하기 위하여 퍼지 추론을 이용한 방법을 제안한다. 사용자로부터 몇 개의 음란 사이트 URL을 질의로 입력받아, 해당 URL로부터 수집된 웹 문서들에서 웹 태그와 불용어를 제외한 모든 용어들을 추출한 후, 용어의 DF, TF, HI(Heuristic Information) 정보들을 퍼지 추론에 적용하여 사용자가 제시한 음란 사이트에서 용어의 중요도를 산정한다. 또한, 웹 로봇은 인터넷에서 웹 문서를 수집하고, 퍼지 추론에 의해 산정된 용어의 중요도를 이용하여 수집된 웹 문서가 음란 문서일 가능성을 판별한다.

  • PDF

Automatic Text Categorization by using Normalized Term Frequency Weighting (정규화 용어빈도가중치에 의한 자동문서분류)

  • 김수진;김민수;백장선;박혁로
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.510-512
    • /
    • 2003
  • 본 논문에서는 문서의 자동 분류를 위한 용어 빈도 가중치 계산 방법으로 Box-Cox변환기법을 응용한 정규화 용어빈도 가중치를 정의하고, 이를 문서 분류에 적응하였다. 여기서 Box-Cox 변환기법이란 자료를 정규분포화 할 때 적용하는 통계적인 변환방법으로서, 본 논문에서는 이를 응용하여 새로운 용어빈도가중치 계산법을 제안한다. 문서에서 등장한 용어 빈도는 너무 많거나 적게 등장할 경우, 중요도가 떨어지게 되는데, 이는 용어의 중요도가 빈도에 따른 정규분포로 모델링 될 수 있다는 것을 의미한다. 또한 정규화 가중치 계산방법은 기존의 용어빈도 가중치 공식과 비교할 때, 용어마다 계산방법이 달라져, 로그나 루트와 같은 고정된 가중치 방법보다는 좀더 일반적인 방법이라 할 수 있다. 신문기사 8000건을 대상으로 4개의 그룹으로 나누어 실험 한 결과, 정규화 용어빈도가중치 계산방법이 모두 우위의 분류 정확도롤 가져, 본 논문에서 제안한 방법이 타당함을 알 수 있다.

  • PDF

Comparison of Term-Weighting Schemes for Environmental Big Data Analysis (환경 빅데이터 이슈 분석을 위한 용어 가중치 기법 비교)

  • Kim, JungJin;Jeong, Hanseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.236-236
    • /
    • 2021
  • 최근 텍스트와 같은 비정형 데이터의 생성 속도가 급격하게 증가함에 따라, 이를 분석하기 위한 기술들의 필요성이 커지고 있다. 텍스트 마이닝은 자연어 처리기술을 사용하여 비정형 텍스트를 정형화하고, 문서에서 가치있는 정보를 획득할 수 있는 기법 중 하나이다. 텍스트 마이닝 기법은 일반적으로 각각의 분서별로 특정 용어의 사용 빈도를 나타내는 문서-용어 빈도행렬을 사용하여 용어의 중요도를 나타내고, 다양한 연구 분야에서 이를 활용하고 있다. 하지만, 문서-용어 빈도 행렬에서 나타내는 용어들의 빈도들은 문서들의 차별성과 그에 따른 용어들의 중요도를 나타내기 어렵기때문에, 용어 가중치를 적용하여 문서가 가지고 있는 특징을 분류하는 방법이 필수적이다. 다양한 용어 가중치를 적용하는 방법들이 개발되어 적용되고 있지만, 환경 분야에서는 용어 가중치 기법 적용에 따른 효율성 평가 연구가 미비한 상황이다. 또한, 환경 이슈 분석의 경우 단순히 문서들에 특징을 파악하고 주어진 문서들을 분류하기보다, 시간적 분포도에 따른 각 문서의 특징을 반영하는 것도 상대적으로 중요하다. 따라서, 본 연구에서는 텍스트 마이닝을 이용하여 2015-2020년의 서울지역 환경뉴스 데이터를 사용하여 환경 이슈 분석에 적합한 용어 가중치 기법들을 비교분석하였다. 용어 가중치 기법으로는 TF-IDF (Term frequency-inverse document frquency), BM25, TF-IGM (TF-inverse gravity moment), TF-IDF-ICSDF (TF-IDF-inverse classs space density frequency)를 적용하였다. 본 연구를 통해 환경문서 및 개체 분류에 대한 최적화된 용어 가중치 기법을 제시하고, 서울지역의 환경 이슈와 관련된 핵심어 추출정보를 제공하고자 한다.

  • PDF

The eight decision which it follows in XML tag classification (XML 태그 분류에 따른 가중치 결정)

  • Jeong, Hye-Jin
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.703-706
    • /
    • 2007
  • 보다 효과적인 색인어 추출 및 색인어 가중치 결정을 위하여 문서의 내용뿐 아니라 구조를 이용하여 색인을 추출하는 연구가 이루어지고 있는데, 대부분의 연구들이 XML 태그의 중요도가 아닌, 문맥상의 단락에 대한 중요도를 계산하는게 일반적이다. 이러한 기존 연구들은 대부분이 객관적인 실험을 통해서 중요도를 입증하기보다는 상식적인 관점에서 단순한 수치로 중요도를 결정하고 있다. 본 논문에서는 웹 문서 관리를 위한 표준으로 자리잡아가고 있는 XML 문서의 태그 정보를 이용한 자동색인을 위하여, 논문을 구성하는 주요 태그를 중요도에 따라 분류하고, 낮은 태그에서 추출된 용어 가중치를 계산하고, 그 가중치로 높은 가중치의 태그에서 추출된 용어의 가중치를 갱신해 가면서 최종 가중치를 계산하는 방법을 제안한다. 보다 객관적인 가중치 결정을 위하여 사용자가 중요하게 생각하는 태그를 실험해 보고 그에 따라 중요도를 분류하여 가중치 계산에 반영한다. 그리고 기존 태그 중요도 결정 방법을 적용하여 계산된 색인어 가중치를 이용한 검색성능과 비교함으로써 본 논문에서 제안한 방법을 적용하여 계산된 색인어 가중치의 효과를 검증한다.

Automatic Document Categorization by the Importance of Features (자질 중요도 계산 기법에 의한 자동문서 범주화)

  • 이경찬;강승식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.537-539
    • /
    • 2003
  • 문서 범주화를 위해 자질을 선별하는 기법으로는 자질의 출현 빈도에 따라 범주를 대표하는 자질들을 선별하는 것이 일반적이다. 출현 빈도에 의한 자질을 선별하는 통계적인 기법은 문서의 내용을 대표하는 용어들의 중요도를 간과하는 문제가 발생한다. 본 논문에서는 학습 문서 및 실험 문서에서 자질의 중요도에 의해 범주 대표어를 선별하는 문서 범주화 기법을 제안하였으며, 역범주 빈도 및 카이제곱 통계량에 의해 자질을 선별하는 방법과 비교-실험을 하였다. 문서 범주화 모델로는 나이브 베이지언 확률 모델을 이용하였으며, 성능 평가를 위해서 웹 디렉토리에서 수집된 데이터를 이용하여 실험하였다. 본 논문에서 제안한 자질 중요도에 의한 자질 선별 기법은 용어의 출현 빈도 및 카이제곱 통계량에 의해 자질을 선별한 방법보다 더 나은 성능을 보였다.

  • PDF

An XML Tag Indexing Method Using on Lexical Similarity (XML 태그를 분류에 따른 가중치 결정)

  • Jeong, Hye-Jin;Kim, Yong-Sung
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.71-78
    • /
    • 2009
  • For more effective index extraction and index weight determination, studies of extracting indices are carried out by using document content as well as structure. However, most of studies are concentrating in calculating the importance of context rather than that of XML tag. These conventional studies determine its importance from the aspect of common sense rather than verifying that through an objective experiment. This paper, for the automatic indexing by using the tag information of XML document that has taken its place as the standard for web document management, classifies major tags of constructing a paper according to its importance and calculates the term weight extracted from the tag of low weight. By using the weight obtained, this paper proposes a method of calculating the final weight while updating the term weight extracted from the tag of high weight. In order to determine more objective weight, this paper tests the tag that user considers as important and reflects it in calculating the weight by classifying its importance according to the result. Then by comparing with the search performance while using the index weight calculated by applying a method of determining existing tag importance, it verifies effectiveness of the index weight calculated by applying the method proposed in this paper.

Intelligne information retrieval using latent semantic analysis on the internet (인터넷에서 잠재적 의미 분석을 이용한 지능적 정보 검색)

  • 임재현;김영찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1782-1789
    • /
    • 1997
  • Most systems that retrieve distributed information on the Internet have difficulties in retrieving relevant information for they are not able to reflect exact semantics on retrieval queries that usersrequest. In this paepr, we propose an automatic query expansion based on ter distribution which reflects semantics of retrieval term to emhance the performance of information retrieval. We computed weight, indicating its overal imoritance in the collection documents and user's query and we use LSI's SVD technique to measure the term distribution which appears similar to query. And also, we measure the similarity to compared numerical value with query terms. Also we researched the method to reduce additional terms automatically and evaluated the performance of the proposed method.

  • PDF

An XML Keyword Indexing Method Using on Lexical Similarity (단락을 분류에 따른 XML 키워드 가중치 결정 기법)

  • Jeong, Hye-Jin;Kim, Hyoung-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.205-208
    • /
    • 2008
  • 보다 효과적인 키워드 추출 및 키워드 가중치 결정을 위하여 문서의 내용뿐 아니라 구조를 이용하여 색인을 추출하는 연구가 이루어지고 있는데, 대부분의 연구들이 XML 단락별 중요도가 아닌, 문맥상의 단락에 대한 중요도를 계산하는게 일반적이다. 이러한 기존 연구들은 대부분이 객관적인 실험을 통해서 중요도를 입증하기보다는 일반적인 관점에서 단순한 수치로 중요도를 결정하고 있다. 본 논문에서는 웹 문서 관리를 위한 표준으로 자리잡아가고 있는 XML 문서의 자동색인을 위하여, 논문을 구성하는 주요 단락을 세분하고, 단락에서 추출된 용어의 가중치를 갱신해 가면서 최종 색인어 가중치를 계산하는 방법을 제안한다.

  • PDF