• 제목/요약/키워드: 용기 파열

Search Result 71, Processing Time 0.024 seconds

A Proposed Model to Estimate Condensing Heat Transfer Coefficient in Steam-Air Mixture (비응축성 가스(공기)가 존재하는 격납용기내에서 증기의 응축 열전달 계수평가에 관한 모델)

  • Choi, J. H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.344-352
    • /
    • 1983
  • 격납 용기 내에 비응축성 가스(공기)가 존재하는 경우에 증기의 응축 열전달 계수를 평가하는 방 법을 연구하였다. 유일한 대규모 격납 용기 실험인 CVTR자료를 이용하여 응축 열전달 계수를 계산하여, 현재 원자력 발전소의 냉각재 상실 사고(LOCA) 및 주 증기 배관 파열사고(MSLB)시에 격납 용기의 안전 해석에서 공식적으로 사용되고 있는 Tagami와 Uchida열전달 계수 관계식과 비교해 본 결과 좋은 일치를 보여 주었다.

A Study on the Propensity for the Deformation and Failure of a Small Pressurized Cylinder (소형 압력 용기의 변형 및 파열 경향에 대한 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han;Choi, Ye-Roo;Kim, Ki-Bum
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.146-149
    • /
    • 2014
  • Compared to Butane tank, the propane tank should have a higher compressive strength due to its higher vapor pressure. In this study, a theoretical analysis was performed to evaluate the effect of change in the geometry of bottom plate on the mechanical property of tank, and an experiment was also carried out to observe the propensity of the deformation and failure of the vessel using hydraulic pressurizing device. The compressive strength of the vessel was observed to improve 1.5-2.5 MPa as the curvature of the bottom plate was decreased 62 mm and the thickness of the bottom plate was increased 0.25 mm. This study are expected to provide viable information conducive to achieve on-going development of a small vessel for the pressurized propane gas.

고압산소설비의 안전성향상을 위한 연구

  • 윤재건;고신영
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.40-45
    • /
    • 2002
  • 2002년 8월 창원의 한공장 신축공사장의 건물 내부에서 공사중 LPG용기(20kg) 및 산소용기(41$\ell$) 각 1개가 파열되면서 가스가 누출, 폭발하여 작업자 1명이 사망하고 6명이 부상당한 사고가 있었다(Fig. 1, Fig. 2)(중략)

  • PDF

A Study on the Burst Pressure of Circular Tubes (원형튜브의 파열압력에 관한 연구)

  • 이영신;강문중;조원만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1056-1063
    • /
    • 1992
  • Burst pressure of right circular tube is predicted using analytic method, and asymptotic instability pressure of circular tube with roundness defect is found using FEM. Burst tests of nearly right circular tube specimens are carried out and predictions are compared with burst pressures and their accuracy is discussed. It is confirmed that FEM is useful for prediction of burst pressure.

Structural Evaluation on HIC Transport Packaging under Accident Conditions (HIC 운반용기의 사고조건에 대한 구조평가)

  • Chung Sung-Hwan;Kim Duck-Hoi;Jung Jin-Se;Yang Ke-Hyung;Lee Heung-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.231-236
    • /
    • 2005
  • HIC transport packaging to transport a high integrity container(HIC) containing dry spent resin generated from nuclear power plants is to comply with the regulatory requirements of Korea and IAEA for Type B packaging due to the high radioactivity of the content, and to maintain the structural integrity under normal and accident conditions. It must withstand 9 m free drop impact onto an unyielding surface and 1 m drop impact onto a mild steel bar in a position causing maximum damage. For the conceptual design of a cylindrical HIC transport package, three dimensional dynamic structural analysis to ensure that the integrity of the package is maintained under all credible loads for 9 m free drop and 1 m puncture conditions were carried out using ABAQUS code.

  • PDF

Evaluation of Service life for a Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 구조 수명 평가)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyoung-Geun;Doh, Young-Dae
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.23-30
    • /
    • 2008
  • In this paper, the effect of the natural aging on the strength distribution and structural service life of a Filament Wound (FW) composite pressure vessel was studied. The fiber failure strain, which is varied significantly, was considered as the design random variable and the strength analysis was carried out by probabilistic numerical approach. The progressive failure analysis technique and the First Order Reliability Method (FORM) were embedded in this numerical model. As the calculation results, the probability of failure was obtained for each aging time steps and it is found that the strength degradation in FW composite pressure vessel, due to the natural aging, appears within 10 year-aging-time. As an example of the life prediction under natural aging using arbitrary laminated model, the service lifetime of 13 years was predicted based on the probability of failure of 2.5% and the design pressure of 3,250 psi.

Development of the Safety Cabinet for Respiratory High-Pressure cylinder according to Consequence Analysis of Physical Explosion Damage (호흡용 고압용기 파열 피해영향 분석에 따른 안전충전함 개발)

  • Jang, Kap Man;Kim, Jeong Hwan;Jang, Yu Ri;Lee, Jin Han;Jo, Young Do
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.80-88
    • /
    • 2016
  • A fire station and scuba have operated filling facilities for respiratory high-pressure cylinder without getting authority or reporting according to High-Pressure Gas Safety Control Act. They need facility improvement and special management to make provision for the time of accident during filling process. The Government have strived to correct illegal operations and suggested an alternative, establishing and operating the safety cabinet. It insures a safety being distance from danger caused by overpressure and a safety provoked by the protective wall equals or superiors. The safety cabinet is required to have an internal structure that smoothly distribute overpressure at the time of rupture. Plus, it needs to minimize fragments. It is also equipped with the performance of protective wall that makes overpressure to outside vent on the place where there is no person (top or bottom). This study calculated the consequence of physical explosion damage and built a prototype of safety cabinet. In addition, through the gas burst test, it derives for the ways to mitigate the physical explosion damage.

Development of high-pressure composite cylinder for compressed hydrogen storage of fuel cell vehicle: type 3 composite cylinder (수소연료전지 차량용 350bar Type3 복합재 압력용기 실증기술 개발)

  • 박지상;김태욱;정상수;정재한
    • 한국전기화학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.201-206
    • /
    • 2005
  • 본 연구는 기 개발 완료된 천연가스차량용 200bar급 Type 3 복합재 압력용기를 개발로 축척된 핵심요소기술과 실질적인 경험을 바탕으로 수소연료전지 차량에 탑재할 350bar급 Type 3 복합재 압력용기에 대한 설계/해석과 시험평가의 핵심적인 사항을 고찰하였다. 설계/해석에는 350bar급 Type 3 복합재 압력용기에 대한 3차원 비선형 유한요소 모델링 및 해석기법이 제시되었고, 설계된 라이너형상과 와인딩 패턴을 이용하여 필라멘트 와인딩 공법으로 1차시제품을 제작하였다. 제작된 시제품에 대하여 파열시험 및 반복피로시험을 수행하여 설계/해석 기법의 타당성을 검증하였다.

  • PDF