Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.687-690
/
2013
소프트웨어 버스마크 기법은 도용이 의심되는 소프트웨어의 소스 코드를 얻을 수 없을 때 사용할 수 있는 소프트웨어 도용 탐지 기법이다. 이 기법은 프로그램의 바이너리나 자바 클래스 파일에서 프로그램 고유의 특징인 버스마크를 추출한 다음 프로그램간 버스마크 유사도 측정을 통해 도용을 탐지한다. 이 논문에서는 선행 연구된 k그램 버스마크 기법에 연산자 요약이라는 아이디어를 접목한 연산자 요약 k그램 버스마크 기법을 제안한다. 연산자 요약이란 연산자 우선순위가 같은 연산자의 JVM 명령어를 묶어 요약번호로 나타내는 것이다. 연산자 요약 k그램 버스마크 기법은 연산자 요약과 제어 흐름을 고려하여 생성한 연속된 k개의 요약번호 시퀀스 집합을 버스마크로 정의한다. 버스마크를 평가하기 위해 선택 정렬 메소드와 버블 정렬 메소드를 대상으로 신뢰도 실험과 강인도 실험을 하였다. 실험 결과 연산자 요약 k그램 버스마크 기법이 선행 연구된 Tamada 버스마크 기법과 k그램 버스마크 기법보다 높은 신뢰도와 강인도를 보였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.455-458
/
2020
문서 요약은 입력 문서의 핵심 내용을 파악하여 짧고 간결한 문장으로 나타내는 과정이다. 최근에는 문서 요약을 위해 사전 학습된 언어 모델을 이용하는 방식이 여럿 제안되고 있지만, 이러한 언어 모델들은 문서 요약의 특성을 고려하지 않고 설계된 입력 노이즈 방식을 사용하는 한계점이 있다. 본 논문에서는 한국어 문서 추상 요약에 사전 학습 언어 모델인 BART를 도입하고, 입력 문서에 무작위 문장을 삽입하는 노이징 방식을 추가하여 문서 추상 요약 모델의 언어 이해 능력을 향상시키는 방법론을 제안한다. 실험 결과, BART를 도입한 문서 요약 모델의 결과는 다른 요약 모델들의 결과에 비해 전반적으로 품질 향상을 보였으며, BART와 함께 무작위 문장을 삽입하는 노이징 방법은 적은 비율로 삽입하는 경우 추가적인 성능 향상을 보였다.
Ryu, Jae-Hyun;Noh, Yunseok;Choi, Su Jeong;Park, Se-Young
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.120-125
/
2018
문서 요약 문제는 최근 심층 신경망을 활용하여 활발히 연구되고 있는 문제 중 하나이다. 많은 기존 연구들이 주로 시퀀스-투-시퀀스 모델을 활용하여 요약을 수행하고 있으나, 아직 양질의 요약을 생성하기에는 많은 문제점이 있다. 시퀀스-투-시퀀스 모델을 활용한 요약에서 가장 빈번히 나타나는 문제 중 하나는 요약문의 생성과정에서 단어나 구, 문장이 불필요하게 반복적으로 생성되는 것이다. 이를 해결하기 위해 다양한 연구가 이루어지고 있으며, 이들 대부분은 요약문의 생성 과정에서 정확한 정보를 주기 위해 모델에 여러 모듈을 추가하였다. 하지만 기존 연구들은 생성 단어가 정답 단어로 나올 확률을 최대화 하도록 학습되기 때문에, 생성하지 말아야 하는 단어에 대한 학습이 부족하여 반복 생성 문제를 해결하는 것에는 한계가 있다. 따라서 본 논문에서는 기존 요약 모델의 복잡도를 높이지 않고, 단어 생성 이력을 직접적으로 이용하여 반복 생성을 제어하는 모델을 제안한다. 제안한 모델은 학습할 때 생성 단계에서 이전에 생성한 단어가 이후에 다시 생성될 확률을 최소화하여 실제 모델이 생성한 단어가 반복 생성될 확률을 직접적으로 제어한다. 한국어 데이터를 이용하여 제안한 방법을 통해 요약문을 생성한 결과, 비교모델보다 단어 반복이 크게 줄어들어 양질의 요약을 생성하는 것을 확인할 수 있었다.
Journal of Korea Society of Industrial Information Systems
/
v.10
no.2
/
pp.26-31
/
2005
In this paper, we present the document summarizers which are simpler and more condense than the existing ones generally used in the web search engines. This method is a statistic-based summarization method using the concept of the complete graph. We suppose that each sentence as a vertex and the similarity between two sentences as a link of the graph. We compare this summarizer with those of Clustering and MMR techniques which are well-known as the good summarization methods. For the comparison, we use FScore using the summarization results generated by human subjects. Our experimental results verify the accuracy of this method, being about $30\%$ better than the others.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.124-130
/
2021
기계요약의 사실 불일치는 생성된 요약이 원문과 다른 사실 정보를 전달하는 현상이며, 특히 개체명이 잘못 사용되었을 때 기계요약의 신뢰성을 크게 훼손한다. 개체명의 수정을 위해서는 두 가지 작업을 수행해야한다. 먼저 요약 내 각 개체명이 올바르게 쓰였는지 판별을 해야하며, 이후 잘못된 개체명을 맞게 고치는 작업이 필요하다. 본 논문에서는 두 가지 작업 모두 각 개체명을 문맥적으로 이해함으로써 해결할 수 있다고 가정하고, 이에 따라 두 작업에 대한 다중 작업 학습 방법을 제안한다. 제안한 방법을 통해 학습한 모델은 생성된 기계요약에 대한 후처리 교정을 수행할 수 있다. 제안 모델을 평가하기 위해 강제적으로 개체명을 훼손시킨 요약데이터와 기계 요약 데이터에 대해서 성능을 평가 하였으며, 다른 개체명 수정 모델과 비교하였다. 제안모델은 개체명 수준에서 92.9%의 교정 정확도를 달성했으며, KoBART 요약모델이 만든 기계요약의 사실 정확도 4.88% 포인트 향상시켰다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.47-53
/
2020
문서 요약은 주어진 문서에서 핵심 내용만을 남긴 간결한 요약문을 생성하는 일로 자연어처리의 주요 분야 중 하나이다. 최근 방대한 데이터로부터 심층 신경망 표상을 학습하는 기술의 발전으로 문서 요약 기술이 급진적으로 진화했다. 이러한 데이터 기반 접근 방식에는 모델의 학습을 위한 양질의 데이터가 필요하다. 그러나 한국어와 같이 잘 알려지지 않은 언어에 대해서는 데이터의 획득이 쉽지 않고, 이를 구축하는 것은 많은 시간과 비용을 필요로 한다. 본 논문에서는 한국어 문서 요약을 위한 대용량 데이터셋을 소개한다. 데이터셋은 206,822개의 기사-요약 쌍으로 구성되며, 요약은 표제 형식의 여러 문장으로 되어 있다. 우리는 구축한 학습 데이터의 적합성을 검증하기 위해 수동 평가 및 여러 주요 속성에 대해 분석하고, 기존 여러 문서 요약 시스템에 학습 및 평가하여 향후 문서 요약 벤치마크 데이터셋으로써 기준선을 제시한다. 데이터셋은 https://github.com/hong8e/KHS.git의 스크립트를 통해 내려받을 수 있다.
For processing signature file in parallel, an effective signature file declustering method is needed. The Linear Code Decomposition Method(LCDM) used for the Hamming Filter may give a good performance in some cases, but due to its static property, it fails to evenly decluster signature file when signature are skewed. In addition, it has other problems such as limited scalability and non-determinism. In this paper we propose a new signature file declustering method, called Inner-product method, which overcomes those problems in the LCDM. The Inner-product method declusters signature file dynamically based on the signature difference which is computed by using signature inner product. we show through the simulation experiment that the Inner-product outperforms the LCDM under various data workloads.
Journal of the Korean Society for information Management
/
v.21
no.3
/
pp.289-303
/
2004
This experimental study proposes a multi-document summarization method that produces optimal summaries in which users can find answers to their queries. In order to identify the most effective method for this purpose, the performance of the three summarization methods were compared. The investigated methods are sentence clustering, passage extraction through spreading activation, and clustering-passage extraction hybrid methods. The effectiveness of each summarizing method was evaluated by two criteria used to measure the accuracy and the redundancy of a summary. The passage extraction method using the sequential bnb search algorithm proved to be most effective in summarizing multiple documents with regard to summarization precision. This study proposes the passage extraction method as the optimal multi-document summarization method.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.395-398
/
2021
최근 방대한 양의 텍스트 정보가 인터넷에 유통되면서 정보의 핵심 내용을 파악하기가 더욱 어려워졌으며, 이로 인해 자동으로 텍스트를 요약하려는 연구가 활발하게 이루어지고 있다. 텍스트 자동 요약을 위한 다양한 기법 중 특히 트랜스포머(Transformer) 기반의 모델은 추상 요약(Abstractive Summarization) 과제에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 하지만 트랜스포머 모델은 매우 많은 수의 매개변수들(Parameters)로 구성되어 있어서, 충분한 양의 데이터가 확보되지 않으면 이들 매개변수에 대한 충분한 학습이 이루어지지 않아서 양질의 요약문을 생성하기 어렵다는 한계를 갖는다. 이러한 한계를 극복하기 위해 본 연구는 소량의 데이터가 주어진 환경에서도 양질의 요약문을 생성할 수 있는 문서 요약 방법론을 제안한다. 구체적으로 제안 방법론은 한국어 사전학습 언어 모델인 KoBERT의 임베딩 행렬을 트랜스포머 모델에 적용하는 방식으로 문서 요약을 수행하며, 제안 방법론의 우수성은 Dacon 한국어 문서 생성 요약 데이터셋에 대한 실험을 통해 ROUGE 지표를 기준으로 평가하였다.
Proceedings of the Korean Society for Information Management Conference
/
2006.08a
/
pp.175-180
/
2006
이 연구에서는 질의응답을 기반으로 한 검색 서비스를 이용할 때 이용자가 효율적으로 응답정보를 이용할 수 있도록 검색되는 복수 응답을 요약하는 방안을 제시하였다. 복수 응답을 요약하기 위해서는 질의중심방식과 응답중심방식이 비교되었다. 생성된 요약문을 평가한 결과 응답내용을 중심으로 요약하는 방식이 질의중심으로 요약하는 방식보다 질의에 적합한 문장을 효과적으로 추출하고 중복되는 정보도 줄여주는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.