• Title/Summary/Keyword: 요소망의 자동생성

Search Result 68, Processing Time 0.024 seconds

3D Tunnel Modeling by Parametric Representation of Geometry (매개변수식 기하 표현법에 의한 3차원 터널 모델링)

  • 이형우;신대석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A method of automatic 3D tunnel modeling is proposed. The proposed method used the parametric representation of geometry and a hierarchical and relational data structure. These two bases provide the generalization and extension for 3D tunnel modeling. Especially, these two fundamentals ion the basis iota representing the characteristics of the tunnel structure for analysis. The constant-curvature characteristic is exploited to generate 3D mesh on the tunnel surface. This is attributed to the advantage that any 2D automatic mesh generation algorithm can be applied to 3D mesh modeling.

Automatic Generation of Tetrahedral Meshes from General Sections (일반 단면으로부터 사면체 요소망의 자동생성)

  • Chae, Su-Won;Lee, Gyu-Min;Sin, Sang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.196-205
    • /
    • 2000
  • Computed Tomography (CT), Nuclear Magnetic Resonance Imaging (MR1) and some ultrasound techniques make it possible to obtain cross sections of human body or mechanical parts. In CAD system, a series of sectional surfaces can also be obtained from solid models of 3D objects. In this paper we introduce a tetrahedral meshing algorithm from these series of general sections using basic operators. In this scheme. general sections of three-dimensional object are triangulated first and side surfaces between two sections are triangulated by the use of tiling process. Finally tetrahedral meshing process is performed on each layer of 3D objects, which is composed of two general sections and one side surface.

Automatic Generation of Triangular Shell Element Meshes on Mid-Surface in Shell Structure (셸 구조물의 중간면에 대한 삼각형 셸 요소망의 자동생성)

  • Moon, Yeon-Cheol;Yang, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.451-460
    • /
    • 2007
  • The surface of 3D shell structure is created by using NURBS and nodes for generating finite element mesh on the surface are created by using external node offset method. In so doing the shortest distance between nodes on the top and bottom surface is searched and then the coordinates of nodes are determined by calculating the mid point of them in the middle of top and bottom surface. Triangular elements are formed on mid surface, and the average aspect ratio of the generated triangular elements are over 0.9.

Automatic Mesh Generation Method in Shallow Water Area considering Water Depth (수심을 고려한 천해역에서의 자동요소 생성법)

  • 김남형;양정필;박상길
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.97-105
    • /
    • 2000
  • This paper presents an automatic mesh generation considering water depth, which is based on the depth interpolation. The key feature of this method is that the position of a mesh on any depth in the shallow water area can be generated. The Examples are carried out, and the results are shown to be good. This method is shown to be a useful and powerful tool for the flow calculation for the seabed topography.

  • PDF

Automatic Mesh Generation by Delaunay Triangulation and Its Application to Remeshing (Delaunay 삼각화기법을 이용한 유한요소망의 자동생성과 격자재구성에의 응용)

  • Jeong, Hyeon-Seok;Kim, Yong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.553-563
    • /
    • 1996
  • An algorithm for automatic mesh generation of two-dimensional arbitrary planar domain is proposed by using Delaunay triangulation algorithm. An efficient algorithm is proposed for the construction of Delaunay triangulation algorithm over convex planar domain. From the definition of boundary, boundary nodes are first defined and then interior nodes are generated ensuring the Delaunay property. These interior nodes and the boundary nodes are then linked up together to produce a valid triangular mesh for any finite element analysis. Through the various example, it is found that high-quality triangular element meshes are obtained by Delaunay algorithm, showing the robustness of the current method. The proposed mesh generation scheme has been extended to automatic remeshing, which is applicable to FE analysis including large deformation and large distortion of elements.

An Adaptive Construction of Quadrilateral Finite Elements Using H-Refinement (h-분할법에 의한 사각형 유한요소망의 적응적 구성)

  • 채수원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2932-2943
    • /
    • 1994
  • An efficient approach to the automatic construction of effective quadrilateral finite element meshes for two-dimensional analysis is presented. The procedure is composed of, firstly, an initial mesh generation and, secondly, an h-version of adaptive refinement based on error analysis. As for an initial mesh generation scheme, a modified looping algorithm has been employed. For the adaptive refinement process, an error indicator obtained by computing the residual error of the equilibrium equations in the energy norm with a relaxation factor has been employed. Examples of mesh generation and self-adaptive mesh improvements are given. These example solutions demonstrate that an effective mesh for a given error tolerance can be obtained in a few steps of the analysis processes.

Automated Mesh Generation For Finite Element Analysis In Metal Forming (소성 가공의 유한 요소 해석을 위한 자동 요소망 생성)

  • 이상훈;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.17-23
    • /
    • 1997
  • In the two-dimensional Finite Element Method for forming simulation, mesh generation and remeshing process are very significant. In this paper, using the modified splitting mesh generation algorithm, we can overcome the limitation of existing techniques and acquire mesh, which has optimal mesh density. A modified splitting algorithm for automatically generating quadrilateral mesh within a complex domain is described. Unnecessary meshing process for density representation is removed. Especially, during the mesh generation with high gradient density like as shear band representation, the modified mesh density scheme, which will generate quadrilateral mesh with the minimized error, which takes effect on FEM solver, is introduced.

  • PDF

Automatic Creating Inference net method in Expert System (전문가 시스템에서 추론망 자동 생성 기법)

  • 김찬일
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.135-139
    • /
    • 2002
  • 전문가 시스템은 여려 분야에서 활용되고 있으나 여러 가지 문제점을 발생시키고 있다. 그 문제점 중 하나로 전문가로부터 지식을 추출해 내는 과정에서 발생하는 어려움들이 있다. 즉, 전문가로부터의 지식들을 추출하여 그것들을 지식 베이스화하는 작업과 그 지식을 추론할 수 있도록 추론 망으로 구성하는 것이다. 비록 이런 문제점들을 해결한다고 하여도 규칙화 된 추론망을 구성하는 데는 시간적 요소와 전문적인 지식을 가진 인적 자원이 많이 소모되므로 전문가 시스템을 구성하는 것은 실질적으로 불가능하다. 본 논문에서는 전문가는 단순히 자신이 가진 단편적인 지식들의 특징들을 입력하고, 이 특징들로부터 지식을 추출하여 지식 베이스화하고, 이를 이용한 추론망 구성을 자동 추론망 생성 시스템이 대신하는 기법을 제시한다. 실제 구성된 추론망은 규칙 기반의 추론 망으로 구성하여 지식 베이스화 한다.

  • PDF

Development of Finite Element Program for Automobile Crashworthiness(II) (자동차 충돌해석용 프로그램 개발(II))

  • 채수원;최형연;민동균
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.67-87
    • /
    • 1996
  • 본 연구에서는 차체의 충돌해석 및 모델링을 위하여 판/쉘 요소의 자동생성 모듈을 개발하고 재료의 변형특성 모델링 모듈 및 접촉처리 모듈을 개발하였다. 충돌해석용 전처리기능으로는 평면, 실린더 곡면, B-스플라인 곡면 및 블렌딩 (blending) 곡면상에서의 사각형 요소망 자동생성 기법과 프로그램을 개발하였다. 또한 차체를 구성하고 있는 여러가지 재료들의 변형거동을 모델링하여 개발중인 충돌해석전용프로그램인 Autocrash의 모듈로서 완성하였다. 이들은 변형률속도의 영향이 고려된 탄소성 재료, 강체 재료, 포옴 재료 및 이방성 재료등으로 정면충돌 해석 및 측면충돌 해석에 필요하다. 한편 접촉처리 모듈에서 접촉탐색법으로는 주종탐색법과 HITA 알고리즘을 병행하여 사용할 수 있도록 프로그래밍하였으며, 불침투 조건의 처리는 벌칙함 수법을 이용하였다.

  • PDF

Automatic Generation of Quadrilateral Shell Elements on Sculptured Surfaces (자유곡면에서 사각형 쉘요소의 자동생성)

  • Park, S.J.;Chae, S.W.;Koh, B.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.145-153
    • /
    • 1995
  • An algorithm for the automatic generation of quadrilateral shell elements on three-dimensional sculptured surfaces has been developed, which is one of the key issues in the finite element analysis of structures with complex shapes such as automobile structures. Mesh generation on sculptured surfaces is performed in three steps. First a sculptured surface is transformed to a projection plane, on which the loops are subdivided into subloops by using the best split lines, and with the use of 6-node/8-node loop operators and a layer operator, quadrilateral finite elements are constructed on this plane. Finally, the constructed mesh is transformed back to the original sculptured surfaces. The proposed mesh generation scheme is suited for the generation of non-uniform meshes so that it can be effectively used when the desired mesh density is available. Sample meshes are presented to demonstrate the versatility of the algorithm.

  • PDF