• Title/Summary/Keyword: 요소(mesh)의존성

Search Result 11, Processing Time 0.021 seconds

Finite Element Mesh Dependency in Nonlinear Earthquake Analysis of Concrete Dams (콘크리트 댐의 비선형 지진해석에서의 유한요소망 영향)

  • 이지호
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.637-644
    • /
    • 2001
  • A regularization method based on the Duvaut-Lions viscoplastic scheme for plastic-damage and continuum damage models, which provides mesh-independent and well-posed solutions in nonlinear earthquake analysis of concrete dams, is presented. A plastic-damage model regularized using the proposed rate-dependent viscosity method and its original rate-independent version are used for the earthquake damage analysis of a concrete dam to analyze the effect of the regualarization and mesh. The computational analysis shows that the regularized plastic-damage model gives well-posed solutions regardless mesh size and arrangement, while the rate-independent counterpart produces mesh-dependent ill-posed results.

A Tensile Criterion to Minimize FE Mesh-Dependency in Concrete Beam under Blast Loading (폭발하중을 받는 콘크리트 보의 요소의존성 최소화 인장기준식)

  • Kwak, Hyo-Gyoung;Gang, HanGul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • A tensile failure criterion that can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept is introduced, and conventional plasticity based damage models for concrete such as CSC model and HJC model, which are generally used for the blast analyses of concrete structures, are compared with orthotropic model in blast test to verify the proposed criterion. The numerical prediction of the time-displacement relations in mid span of the beam during blast loading are compared with experimental results. Analytical results show that the numerical error is substantially reduced and the accuracy of numerical results is improved by applying a unique failure strain value determined according to the proposed criterion.

An Criterion to Minimize FE Mesh-Dependency in Concrete Plate under Impact Loading (충격하중을 받는 판형콘크리트 구조물의 요소의존성 최소화 기준식)

  • Kwak, Hyo-Gyoung;Gang, Han-Gul;Park, Lee-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.147-154
    • /
    • 2014
  • In the context of an increasing need for safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling high strain rate conditions with these material models, mesh dependency in the used finite element(FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. This paper introduces an criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC(Holmquist Johnson Cook) model is examined to trace sensitivity to the used FE mesh size. To coincide with the purpose of the perforation simulation with a concrete plate under a projectile(bullet), the residual velocities of projectile after perforation are compared. The analytical results show that the variation of residual velocity with the used FE mesh size is quite reduced and accuracy of simulation results are improved by applying a unique failure strain value determined according to the proposed criterion.

Topology Design Optimization of Nonlinear Thermo-elastic Structures (비선형 열탄성 연성구조의 위상 최적설계)

  • Moon, Min-Yeong;Jang, Hong-Lae;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.535-541
    • /
    • 2010
  • In this paper, we have derived a continuum-based adjoint design sensitivity of general performance functionals with respect to Young' modulus and heat conduction coefficient for steady-state nonlinear thermoelastic problems. An adjoint equation for temperature and displacement fields is defined for the efficient computation of the coupled field design sensitivity. Through numerical examples, we investigated the mesh dependency of the topology optimization method in the thermoelastic problems. Also, comparing the dominant loading cases of thermal and mechanical ones, the loading dependency of topology design optimization in coupled multi-physics problems is investigated.

Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements (응집영역요소를 이용한 균열진전 모사)

  • Ha, Sang-Yul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.519-525
    • /
    • 2009
  • In this study a cohesive zone model was used to simulate the delamination phenomena which occurs by a successive crack initiation and propagation in composite laminates. The cohesive zone model was incorporated to the classical finite element method via cohesive element formulation and then implemented into the user-subroutine UEL of a commercial finite element program Abaqus. To validate the formulation and implementation of the cohesive element the finite element results were compared with the experimental data of double cantilever beam and end notched flexure tests. The numerical results well agree with the experimental load-displacement curves. Also the effect of the elastic stiffness and the size of the cohesive element on the global load-displacement curves were studied numerically. To minimize the mesh-dependency of the crack propagation path and eliminate the zig-zag patterns in the load-displacement curve, cohesive elements should be refined at the crack-tip.

Non-self-intersecting Multiresolution Deformable Model (자체교차방지 다해상도 변형 모델)

  • Park, Ju-Yeong;Kim, Myeong-Hui
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • This paper proposes a non-self-intersecting multiresolution deformable model to extract and reconstruct three-dimensional boundaries of objects from volumetric data. Deformable models offer an attractive method for extracting and reconstructing the boundary surfaces. However, convensional deformable models have three limitations- sensitivity to model initialization, difficulties in dealing with severe object concavities, and model self-intersections. We address the initialization problem by multiresolution model representation, which progressively refines the deformable model based on multiresolution volumetric data in order to extract the boundaries of the objects in a coarse-to-fine fashion. The concavity problem is addressed by mesh size regularization, which matches its size to the unit voxel of the volumetric data. We solve the model self-intersection problem by including a non-self-intersecting force among the customary internal and external forces in the physics-based formulation. This paper presents results of applying our new deformable model to extracting a sphere surface with concavities from a computer-generated volume data and a brain cortical surface from a MR volume data.

  • PDF

A Practical Method of Acoustic Emission Source Location in Anisotropic Composite Laminates (이방성 적층복합재 구조에서 AE 발생원 위치표정을 위한 실용적인 방법)

  • Kim, Jeong-Kon;Kang, Yong-Kyu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.237-245
    • /
    • 2003
  • Since the velocity is dependent on the fiber orientation in anisotropic composites, the application of traditional acoustic emission (AE) source location techniques based on the constant velocity to composite structures has been practically impossible. The anisotropy makes the source location procedure complicated and deteriorates the accuracy of the location. In this study, we have divided the region of interest(ROI) into a set of finite elements, taken each element as a virtual source, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. The calculated and the experimentally measured values of the arrival time difference aye then compared to minimize the location error. The results from two different materials, namely AA6061-T6 and CFRP(uni-directional; UD, $[0]_{32}4$) laminate confirmed the practical usefulness of the proposed method.

Form-finding and Deformation Analysis of the Cable Nets for Mesh Reflector Antennas (메쉬 반사판 안테나의 케이블 네트 형상 설계 및 변형 해석)

  • Roh, Jin-Ho;Choi, Hye-Yoon;Jung, Hwa-Young;Song, Deok-Ki;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.609-616
    • /
    • 2022
  • The performance of antenna reflectors crucially depends on the faceting error of the surface. The force density method (FDM) has been widely used for the form-finding analysis of the cable nets of reflectors. However, after performing form-finding of some cable nets, the effective reflective area will decrease. In addition, nonlinear deformations of the cable can not be achieved by using the FDM. Thus, an effective form-find methodology is proposed in this research. The whole parts of the cable networks are described by the absolute nodal coordinate formulation. The form-finding analysis of the reflector with standard configuration is performed to validate the proposed methodology. The influence of boundary condition changes on the configuration accuracy of the cable net is investigated.

Development of Radiation Shielding Analysis Program Using Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 방사선차폐해석 프로그램개발)

  • Park, Ho-Sin;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.51-62
    • /
    • 1993
  • A computational program [TDET] of the particle transport equation is developed on radiation shielding problem in two-dimensional cartesian geometry based on the discrete element method. Not like the ordinary discrete ordinates method, the quadrature set of angles is not fixed but steered by the spatially dependent angular fluxes. The angular dependence of the scattering source term in the particle transport equation is described by series expansion in spherical harmonics, and the energy dependence of the particles is considered as well. Three different benchmark tests are made for verification of TDET : For the ray effect analysis on a square absorber with a flat isotropic source, the results of TDET calculation are quite well conformed to those of MORSE-CG calculation while TDET ameliorates the ray effect more effectively than S$_{N}$ calculation. In the analysis of the streaming leakage through a narrow vacuum duct in a shield, TDET shows conspicuous and remarkable results of streaming leakage through the duct as well as MORSE-CG does, and quite better than S$_{N}$ calculation. In a realistic reactor shielding situation which treats in two cases of the isotropic scattering and of linearly anisotropic scattering with two groups of energy, TDET calculations show local ray effect between neighboring meshes compared with S$_{N}$ calculations in which the ray effect extends broadly over several meshes.eshes.

  • PDF

Mesh Simplification for Preservation of Characteristic Features using Surface Orientation (표면의 방향정보를 고려한 메쉬의 특성정보의 보존)

  • 고명철;최윤철
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.458-467
    • /
    • 2002
  • There has been proposed many simplification algorithms for effectively decreasing large-volumed polygonal surface data. These algorithms apply their own cost function for collapse to one of fundamental simplification unit, such as vertex, edge and triangle, and minimize the simplification error occurred in each simplification steps. Most of cost functions adopted in existing works use the error estimation method based on distance optimization. Unfortunately, it is hard to define the local characteristics of surface data using distance factor alone, which is basically scalar component. Therefore, the algorithms cannot preserve the characteristic features in surface areas with high curvature and, consequently, loss the detailed shape of original mesh in high simplification ratio. In this paper, we consider the vector component, such as surface orientation, as one of factors for cost function. The surface orientation is independent upon scalar component, distance value. This means that we can reconsider whether or not to preserve them as the amount of vector component, although they are elements with low scalar values. In addition, we develop a simplification algorithm based on half-edge collapse manner, which use the proposed cost function as the criterion for removing elements. In half-edge collapse, using one of endpoints in the edge represents a new vertex after collapse operation. The approach is memory efficient and effectively applicable to the rendering system requiring real-time transmission of large-volumed surface data.

  • PDF