DOI QR코드

DOI QR Code

An Criterion to Minimize FE Mesh-Dependency in Concrete Plate under Impact Loading

충격하중을 받는 판형콘크리트 구조물의 요소의존성 최소화 기준식

  • 곽효경 (한국과학기술원 건설 및 환경공학과) ;
  • 강한글 (한국과학기술원 건설 및 환경공학과) ;
  • 박이주 (국방과학연구소)
  • Received : 2014.03.15
  • Accepted : 2014.04.16
  • Published : 2014.06.30

Abstract

In the context of an increasing need for safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling high strain rate conditions with these material models, mesh dependency in the used finite element(FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. This paper introduces an criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC(Holmquist Johnson Cook) model is examined to trace sensitivity to the used FE mesh size. To coincide with the purpose of the perforation simulation with a concrete plate under a projectile(bullet), the residual velocities of projectile after perforation are compared. The analytical results show that the variation of residual velocity with the used FE mesh size is quite reduced and accuracy of simulation results are improved by applying a unique failure strain value determined according to the proposed criterion.

충격 및 폭발하중으로 인한 위험으로부터 구조물의 안정성을 확보하기 위한 필요성의 증대에 따라 고율변형을 받는 콘크리트의 거동은 중요한 연구주제가 되었다. 콘크리트의 고율변형 거동은 정적인 상태와는 다른 독특한 거동을 보이기 때문에 다양한 고율변형모델들이 제안되어 고율변형 상태를 수치해석하는데 사용되고 있다. 이러한 수치해석 과정에서 발생하는 문제가 요소의 크기에 따라 수치해석결과가 크게 변하는 요소의존성 문제이다. 본 논문에서는 파괴에너지이론에 기초하여 요소의존성을 최소화할 수 있는 기준식을 제안하고 HJC(Holmquist Johnson Cook)모델을 이용한 관통수치해석을 통해 기준식을 검증하였다. 그 결과 기준식을 통해 산정된 파괴변형률을 수치해석상에 적용해줌으로써 해석결과의 요소의존성이 감소하였고 해의 정확성 또한 향상되는 것을 파악할 수 있었다.

Keywords

References

  1. CEB(EuroInternational Committee for Concrete)(1993) CEB-FIP Model Code 1990:Design Code.
  2. Cusatis, G. (2011) A Strain-Rate Effects on Concrete Behavior, International Journal of Impact Engineering, 38(4), pp.162-170. https://doi.org/10.1016/j.ijimpeng.2010.10.030
  3. Georgin, J., Reynouard, J. (2003) Modeling of Structures Subjected to Impact: Concrete Behaviour Under High Strain Rate, Cement and Concrete Composites, 25(1), pp.131-143. https://doi.org/10.1016/S0958-9465(01)00060-9
  4. Hallquist, J.O. (2007) LS-DYNA Keyword User's Manual, Livemore Software Technology Corporation.
  5. Hanchak, S., Forrestal, M., Young, E., Ehrgott, J. (1992) Perforation of Concrete Slabs with 48MPa (7ksi) and 140 MPa(20ksi) Unconfined Compressive Strength, International Journal of Impact Engineering, 12(1), pp.1-7. https://doi.org/10.1016/0734-743X(92)90282-X
  6. Holmquist, T.J., Johnson, G.R., Cook, W.H. (1993) A Computational Constitutive Model for Concrete Subjected to Large Strains, High Strain Rates and High Pressure, 14th international Symposium on Ballistics, Quebec, Canada, pp.591-600.
  7. Kwak, H.G., Filippou, F.C. (1990) Finite Element Analysis of Reinforced Concrete Structures Under Monotonic Loads, Department of civil Engineering, University of California.
  8. Lee, Y.H., Choi, H.S., Kim, M.S. (2012) Parametric Study on Reinforced Concrete Columns Under Blast Load, Journal of Computational Structural Engineering, Institute of Korea, 25(3), pp.219-226. https://doi.org/10.7734/COSEIK.2012.25.3.219
  9. Lim, J.H. (2005) Study on Dynamic Tensile Tests of Auto-Body Steel Sheets at the Intermediate Strain Rate for Material Constitutive Equations, Ph. D Dissertation.
  10. Lim, S.J., Ahn, K.H., Huh, H., Kim, S.B., Kim, H.W. (2013) Fracture Evaluation of Metallic Materials at Intermediate Strain Rates, Materials Characterisation, 77, pp.171-179.
  11. Lin, Y., Chen, M.S., Zhong, J. (2008) Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel, Journal of Materials in Civil Engineering, 14(3), pp.262-269.
  12. Malvar, L.J., Ross, C.A. (1998) Review of Strain Rate Effects for Concrete in Tension, ACI Materials Journal, 95(6), pp.735-739.
  13. Men, J.B., Sui, S.Y., Jiang, Lu, J. (2005) Mesh Dependency for Numerical Simulation of Concrete-Penetration, Journal of Beijing institute of Technology, 8.
  14. Planco-Loria, M., Hopperstad, O., Borvik, T., Berstad, T. (2008) Numerical Predictions of Ballistic Limits for Concrete Slabs Using a Modified Version of the HJC Concrete Model, Journal of Impact Engineering, 35(5), pp.290-303. https://doi.org/10.1016/j.ijimpeng.2007.03.001
  15. Shkolnik, I. (2008) Influence of High Strain Rates on Stress-Strain Relationship, Cement and Concrete Composites, 30(10), pp.1000-1012. https://doi.org/10.1016/j.cemconcomp.2007.10.001
  16. Van Mier, J.G. (1986) Multiaxial Strain-Softening of Concrete, Materials and Structures, 19(3), pp.190-200. https://doi.org/10.1007/BF02472035
  17. Vonk, R.A. (1993) A Micromechanical Investigation of Concrete Loaded in Compression, Heron, 38(3).