• Title/Summary/Keyword: 외연적 동적 해석

Search Result 19, Processing Time 0.021 seconds

Three Dimensional FE Analysis of Acoustic Emission of Composite Plate (복합재료 파손 시 발생하는 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung Jo
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.15-20
    • /
    • 2005
  • In this paper, damage induced acoustic emission in the composite plate in numerically simulated by using the three dimensional finite element method and explicit time integration. Acoustic source is modeled by equivalent volume source. To verify the proposed method, dynamic displacements due to the elastic wave are compared with the experiment when the fiber is broken in the single fiber embedded isotropic plate. For the laminated composite plates, the results are compared between homogenized model and DNS approach which models fibers and matrix separately. To capture high frequencies in the elastic wave, small time step size and a large number of meshes are required. The parallel computing technology is introduced to solve a large scale problem efficiently.

Dynamic Characteristic Analysis of Active Gurney Flap Considering Rotational Effect (회전 효과를 고려한 Active Gurney Flap 의 동특성 해석)

  • Kee, YoungJung;Kim, TaeJoo;Kim, DeogKwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • In this study, the finite element analysis was carried out to investigate dynamic characteristics of the AGF(Active Gurney Flap) which is under development for reducing vibration and noise of the helicopter rotor system. The Gurney flap is a kind of small flat plate, mounted normal to the lower surface of the airfoil near to the trailing edge. An electric motor, L-shaped linkages and flap parts were integrated into a rotor bade, and 3~5/rev control was given to the AGF to reduce the vibration in the fixed frame. Thus, an explicit time integration method was adopted to investigate the dynamic response of the AGF with considering both centrifugal force due to the rotor rotation and active control input, and it can be seen that the vertical displacement of the AGF was satisfied to meet the design requirement.

Impact Analysis of Spiral type Electrodes in Vacuum Circuit Breaker (진공회로차단기용 횡자계방식 접점의 충격해석)

  • Park, W.J.;Ahn, K.Y.;Oh, I.S.;Huh, H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.895-900
    • /
    • 2001
  • It is very important for impact analysis to reflect the dynamic characteristics of materials as well as the static characteristics. As the dynamic behavior of a material is different from the static(or quasi-static) one due to the inertia effect and the stress wave propagation, an adequate experimental technique has to be developed to obtain the dynamic responses for the corresponding level of the strain rate. To determine the dynamic characteristics of materials, the Hopkinson bar (compression type) experiment is carried out. For using dynamic material properties, Johnson-Cook model is applied in impact analysis with explicit finite element method

  • PDF

Finite Element Analysis on Standing Wave Phenomenon of a Tire Considering Tread Pattern (트레드 패턴을 고려한 타이어의 스탠딩 웨이브 현상에 대한 유한 요소 해석)

  • Kim, Kee-Woon;Jeong, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2006
  • Each tire has a critical speed at which a standing wave phenomenon occurs along the circumferential direction. If the standing waves are formed, the tire temperature is rapidly increased and it leads to tire failure eventually. As the formation of the standing waves is closely related to the tire stiffness, the effect of the tread pattern needs to be studied numerically. The standing wave phenomenon of a tire model with tread pattern is predicted by an explicit finite element method. The critical speed of the tire with tread pattern is in a good agreement with the experiment and is $15{\sim}20\;km/h$ lower than that of the tire without tread pattern. The effects of the inflation pressure and the vertical load on the critical speed are also investigated by using the tire model with tread pattern.

Nonlinear Finite Element Analysis on Global and Distortional Buckling of Cold-Formed Steel Members (냉간성형강재의 전체좌굴 및 뒤틀림좌굴에 대한 비선형유한요소해석)

  • Kang, Hyun Koo;Rha, Chang Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper presents modelling approaches for the global and distortional buckling of cold-formed built-up steel sections using the finite element software packages, ANSYS and ABAQUS. Thin thickness of the cold-formed steel causes nonlinear behaviour due to local and distortional buckling, thus careful consideration is required in modelling for numerical analysis. Implicit static modelling using ANSYS provides unstable numerical results as the load approaches the limit point but explicit dyamic modelling with ABAQUS is able to display the behaviour even in post-buckling range. Meanwhile, axial load capacities obtained from the numerical analysis show higher values than the experimental axial capacities, due to eccentricity during the test. Axial capacities of the cold-formed steel obtained through numerical analysis requires reduction factor, and this paper suggests 0.88 for the factor.

Analysis of impact damage behavior of GFRP-strengthened RC wall structures subjected to multiple explosive loadings (복합 폭발하중을 받는 GFRP 보강 RC 벽체 구조물의 비선형 충격 손상거동 해석)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1033-1036
    • /
    • 2008
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with glass fiber reinforced polymer (GFRP) composites are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a GFRP-strengthened RC wall structure.

  • PDF

Evaluation of Impact Damage Behavior of a Reinforced Concrete Wall Strengthened with Advanced Composite Materials (복합신소재로 보강된 철근 콘크리트 구조물의 충돌손상거동 평가)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with advanced composite materials (ACM) are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a ACM-strengthened RC wall structure.

  • PDF

A Dynamic Explicit/Rigid-plastic Finite Element Analysis and its Application to Auto-body Panel Stamping Process (동적 외연적/강소성 유한요소 해석과 차체판넬성형에의 적용)

  • 정동원;양동열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.16-25
    • /
    • 1996
  • In the present work a rigid-plastic finite element formulation using dynamic explicit time integration scheme is proposed for numerical analysis of auto-body panel stamping processes. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM(abbreviated from Bending Energy Augmented Membrane) elements are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and the direct trial-and-error method. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oilpan, a fuel tank and a front fender. The numerical results of explicit analysis are compared with the implicit results with good agreements and it is shown that the explicit scheme requires much shorter computational time, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid-plastic finite element method enables an effective computation for complicated autobody panel stamping processes.

  • PDF

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.