• Title/Summary/Keyword: 외란제거 성능

Search Result 74, Processing Time 0.022 seconds

High-Performance Speed Control Using Adaptive State Estimator for Electric Machine with Low-Precision Shaft Encoder (저 분해능 엔코더가 장착된 전동기의 적응 상태추정기를 이용한 고성능 속도제어)

  • 권택준;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.309-313
    • /
    • 1998
  • 고성능 서보 전동기 시스템을 구축하기 위해서는 저속영역과 고속영역을 포함하는 넓은 속도영역에서의 정확한 속도검출을 통한 정밀한 속도제어기 필수적이며, 관성모멘트와 같은 전동기의 파라메터 변동에 대해 강인한 속도제어와 외란 억제능력도 중요한 요소로서 고려되어야 한다. 변동하는 부하의 관성모멘트을 식별하여 PI 속도제어기를 실시간으로 적응 동정하고, 플랜트 잡음과 측정잡음을 고려하는 상태 관측기인 칼만필터의 부하관성에 대한 민감성을 제거하기 위해 이를 적응 동정하여 적응 상태 추정기를 구현함으로써 우수한 속도 추정 성능을 얻었다. 또한 외란과 불확실한 모델링은 등가 외란으로 추정되어 전향적으로 보상된다. 본 논문에서는 이러한 특징을 이용하여 전동기의 고성능 속도제어를 구현하고 유도전동기를 이용한 실험을 통하여 연구결과의 유효성을 확인한다.

  • PDF

On a Design of the Nonlinear Direct Adaptive Controller Using Neural Networks (신경망을 이용한 비선형 직접적응제어기 설계에 관한 연구)

  • 이순영;김관수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 2001
  • 본 논문에서는 비선형 제어시스템의 성능 개선을 위한 새로운 신경망 직접 적응제어 알고리즘을 제시하였다. 제어칙은 Gaussian RBF 신경망을 이용한 제어입력과 근사화 오차 및 외란의 영향을 제거하기 위한 보조제어 입력으로 구성하였다. 또한 신경망에 사용된 가중치와 보조입력의 파라미터를 조정하기 위한 적응칙은 Lyapunov 안정도 이론에 의하여 구하였다. 이렇게 함으로써 외란이나 근사화 오차에 관계없이 플랜트와 기준모델 사이의 오차가 0이 되도록 하는 알고리즘을 구할 수 있었다. 또한 제시된 알고리즘의 효용성을 알아보기 위하여 Duffing forced oscillation 시스템에 대하여 시뮬레이션 하여본 결과 만족할만한 성능을 얻을 수 있었다.

  • PDF

Design of Two-DOF Optimal Controller for Strip Gage and Tension Control of Cold Tandem Mills Using Reference Shaping Filter and Disturbance Observer (목표치 정형화 및 외란 관측기를 활용한 연속 냉간압연 시스템의 2-자유도 스트립 두께 및 장력 최적 제어기 설계)

  • Hong, Wan-Kee;Kang, Hyun-Seok;Hwang, I-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.237-244
    • /
    • 2012
  • This paper studies the design of a two-DOF optimal controller for the strip gauge-tension of cold tandem mill processes, that uses a reference shaping filter and a disturbance observer. First, a mathematical model of the strip gauge and tension system is constructed using the gauge meter equation and Hooke's law, respectively. Next, a two-DOF controller considering of a feedforward controller and a feedback controller is designed. The former is based on the reference shaping filter and the disturbance observer, and the latter is based on the ILQ optimal control algorithm. Finally, it is shown through a computer simulation that the proposed optimal controller is able to improve the strip gauge accuracy and the tension variation more than the conventional MV-AGC controller.

Automobile Cruise Control System Using PID Controller and Kalman Filter (PID 제어와 Kalman 필터를 이용한 자동차 정속주행 시스템)

  • Kim, Su Yeol;Kim, Pyung Soo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.8
    • /
    • pp.241-248
    • /
    • 2022
  • In this paper, the PID controller and Kalman filter are applied to improve the automobile cruise control in the environment with disturbance and noise, and the performance is verified through diverse simulation. First, a mathematical model for a automobile cruise control system is introduced. Second, the performance degradation due to disturbance in the basic open-loop control based cruise control system is shown and then PID controller-based feedback control system to resolve this problem is verified. Third, to improve the performance degradation due to sensor noise that may occur during the feedback process, a Kalman filter is applied and verified. Ultimately, it is verified that the designed cruise control system with PID controller and Kalman filter not only satisfies all performance conditions but also has the ability for disturbance rejection and noise reduction.

Field Driveability Test of Wide Hat-type Sheet Pile using Vibro-Hammer (바이브로해머를 이용한 광폭 Hat형 강널말뚝의 현장 관입시험)

  • Kim, Byoung-Il;Kim, Jae-Kyu;Back, In-Chul;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.103-109
    • /
    • 2007
  • A new steel sheet pile of wide hat-type was developed. Advantage of using wide type of sheet pile is reducing steel weight and consequently cutting down construction cost. Field driveability tests were conducted in order to verifying vibro-driveability of wide hat-type sheet pile. As a result of the tests, penetration rates of newly developed sheet piles were less than those of U-type sheet piles. Axial stresses developed in sheet pile during driving were fur less than yield stress of sheet pile. Futhermore, initial penetration rates of sheet piles were much larger than those obtained from WEAP program.

  • PDF

Design of stationary reference frame current and disturbance rejection control algorithms for a grid connected inverter (계통 연계형 인버터의 정지좌표전류제어 및 외란제거 제어알고리즘 설계)

  • Kim, Seonghyeon;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.154-160
    • /
    • 2020
  • This paper presents a grid current control algorithm for a grid connected inverter (GCI) system in a stationary reference frame. When a Proportional Integral (PI) controller at a stationary reference frame is used in a GCI system, steady state error and phase lags are presented because AC signals are controlled at a stationary reference frame. In this paper, a feedforward controller is applied to the PI controller to compensate the steady state error and phase lags by improving command tracking performance. In addition, disturbance rejection control is applied to the PI controller to protect the GCI system by eliminating disturbance, grid voltage in a GCI system, when a grid fault such as line-to-line fault, happens. The proposed GCI current control algorithm is analyzed in a frequency domain and a simulation model of the proposed GCI current control system is developed for verification of the performance.

High Gain Observer-based Robust Tracking Control of LIM for High Performance Automatic Picking System (고성능 자동피킹 시스템을 위한 선형 유도 모터의 고이득 관측기 기반의 강인 추종 제어)

  • Choi, Jung-Hyun;Kim, Jung-Su;Kim, Sanghoon;Yoo, Dong Sang;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • To implement an automatic picking system (APS) in distribution center with high precision and high dynamics, this paper presents a high gain observer-based robust speed controller design for a linear induction motor (LIM) drive. The force disturbance as well as the mechanical parameter variations such as the mass and friction coefficient gives a direct influence on the speed control performance of APS. To guarantee a robust control performance, the system uncertainty caused by the force disturbance and mechanical parameter variations is estimated through a high gain disturbance observer and compensated by a feedforward manner. While a time-varying disturbance due to the mass variation can not be effectively compensated by using the conventional disturbance observer, the proposed scheme shows a robust performance in the presence of such uncertainty. A Simulink library has been developed for the LIM model from the state equation. Through comparative simulations based on Matlab - Simulink, it is proved that the proposed scheme has a robust control nature and is most suitable for APS.

Robust Control of Flexible Joint Robot Using ISMC and IDA-PBC (ISMC와 IDA-PBC를 이용한 유연관절로봇의 강인제어)

  • Asignacion, Abner Jr.;Park, Seung-kyu;Lee, Min-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1203-1211
    • /
    • 2017
  • This paper proposes a robust controller for flexible joint robots to achieve tracking performance and to improve robustness against both matched and mismatched disturbances. The proposed controller consists of a disturbance observer(DOB), passivity-based controller, and integral sliding mode controller(ISMC) in a backstepping manner. The DOB compensates the mismatched disturbance in the link-side and formulates the reference input for the motor-side controller. Interconnection and damping assignment passivity-based controller (IDA-PBC) performs tracking control of motor-side, and it is integrated to nominal control of ISMC to guarantee the over-all stability of the nominal system, while, matched disturbances are decoupled by the discontinuous control of ISMC. In the design of the link-side controller, PD type impedance controller is designed with DOB and this leads the continuous control input which is suitable to the reference input for the motor-side.

Common Rail Pressure Control Algorithm for Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT를 이용한 디젤엔진의 커먼레일 압력 제어알고리즘 설계 연구)

  • Shin, Jaewook;Hong, Seungwoo;Park, Inseok;Sunwoo, Myoungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • This paper proposes a common rail pressure control algorithm for passenger car diesel engines. For handling the parameter-varying characteristics of common rail systems, the quantitative feedback theory (QFT) is applied to the design of a robust rail pressure control algorithm. The driving current of the pressure control valve and the common rail pressure are used as the input/output variables for the common rail system model. The model parameter uncertainty ranges are identified through experiments. Rail pressure controller requirements in terms of tracking performance, robust stability, and disturbance rejection are defined on a Nichols chart, and these requirements are fulfilled by designing a compensator and a prefilter in the QFT framework. The proposed common rail pressure control algorithm is validated through engine experiments. The experimental results show that the proposed rail pressure controller has a good degree of consistency under various operating conditions, and it successfully satisfies the requirements for reference tracking and disturbance rejection.

An Analysis on the Effect of the PID Controller Design Due to Performance Index (평가지표에 따른 PID 제어기 설계 영향 분석)

  • Lee, Keum-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • Among various modern control theories, PID control has been well used for several decades. PID algorithms need some tuning methods which are used for selecting PID parameters. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that controllers, output characteristics and disturbance rejection property meet some specifications. In this paper, linear conbinational type of performance index using error signal, time, control input and robustness is used to the PID control of air conditioning system. By use of the 2 DOF PID parmeters minimizing perfromacne index controllers, output characteristics and robustness properties are analyzed. Simulations are done by use of MATLAB with Simulink.