• Title/Summary/Keyword: 완전요인설계

Search Result 63, Processing Time 0.024 seconds

가스절연 개폐장치에서 전극 및 경사 유전율 고체 스페이서의 형상 변경

  • Ju, Heung-Jin;Go, Gwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.230-230
    • /
    • 2009
  • 가스절연 개폐장치 (Gas Insulated Switchgear : GIS)의 고체 스페이서에 경사 기능성 재료 (Functionally Graded Material : FGM)가 적용될 때, 절연성능이 크게 향상된다. 본 논문에서는 FGM 스페이서가 적용된 GIS의 전극 및 스페이서의 형상을 변경하여 최대전계를 완화시켰다. 이를 위해 완전요인실험 (Full Factorial Design : FFD)과 결합된 반응표면법 (Response Surface Methodology : RSM)의 최적화기법을 이용하여, 전극 및 스페이서의 최적 형상을 설계하였다.

  • PDF

Characteristics of trace analysis of potential diesel oxygenates using the factorial design in solid-phase microextraction with GC/FID (고체상미량분석법(SPME-GC/FID)에서 요인배치법을 이용한 디젤첨가제의 미량분석의 특성 평가)

  • Park, Jae-Sang;Chang, Soon-Woong
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.370-382
    • /
    • 2007
  • In this study, solid-phase microextraction (SPME) technique using GC/FID was studied as a possible alternative to liquid-liquid extraction for the analysis of EGBE, DGBE, DBM and TGME in water, and an optimization condition of trace analysis of EGBE, DGBE, DBM and TGME using the factorial design was described. Experiments used a fractional factorial design method followed by central composite design allowing optimization of a number of factors as well as statical analysis of results. The response surface analysis showed that the extraction efficiency can be described by a second-order polynomial equation in which the salts concentration, extraction temperature, extraction time and sonication time are the major influences. Using DOE, a new data-dependent method was developed that improved the quantity of confidently analyzed EGBE, DGBE, DBM and TGME in water samples.

A study on the Change of Diameter Based on Cutting Conditions in AL6061-T4 Boring Machining (AL6061-T4의 보링가공 시 절삭조건에 따른 직경 변화에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.49-54
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the change in the spindle speed and the feed rate on the diameter change of a hole using a boring cutter for the internal boring process of AL6061-T4 alloys. The experimental results are quantitatively analyzed by applying the factor analysis and the response surface analysis of the experimental design method. The tendency of the diameter change according to the change in the spindle speed and feed level is also evaluated. During the internal boring process of AL6061-T4 alloys, the main factor affecting the diameter change is the spindle speed in which the diameter decreases as the number of revolutions increases. In addition, the diameter tends to increase as the feed is increased; however, as the number of spindle revolutions increases, the influence of the feed decreases.

Correlation between Surface Roughness and Vibration in Slot Milling of AL7075-T6 (AL7075-T6의 슬롯가공 시 표면거칠기와 진동의 상관관계에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.61-66
    • /
    • 2022
  • This study investigated the characteristics and relationship between surface roughness and vibration according to the cutting conditions in the slot milling of AL7075-T6. The spindle speed, feed, and depth of cut were selected as independent variables and the amplitude of acceleration and surface roughness as dependent variables. Feed affected the surface roughness. As the spindle speed increased, the amplitude of vibration increased in the direction perpendicular to the feed direction. In addition, the amplitude of vibration and surface roughness showed a negative correlation. Under a given feed, the surface roughness improved as the vibration increased.

Study on the Improvement of Milling Recovery and Performance(III) -Various Designs of the Perforated Screen Affecting the Performance of a Rice Whitening Machine- (도정수율(搗精收率)과 성능향상(性能向上)을 위(爲)한 연구(硏究)(III) -정백기(精白機)의 성능(性能)에 영향을 미치는 스크린 설계(設計)에 관한 연구(硏究)-)

  • Noh, Sang Ha;Chung, Chang Joo;Kim, Sam Do
    • Journal of Biosystems Engineering
    • /
    • v.7 no.2
    • /
    • pp.57-71
    • /
    • 1983
  • 마찰식 정미기의 성능에 영향을 미치는 기계설계 및 작동상의 인자로는 스크린의 형태, 롤러의 형태, 롤러회전속도, 출구 저항 등 여러가지가 있다. 이러한 요인들에 대한 연구가 본 논문의 저자에 의해서 시리즈로 연구되어 왔으며, 본 연구는 그의 일환으로 스크린의 단면형상(6각, 8각, 12각 그리고 원통형), 스크린에 뚫려있는 슬랏의 기울기($15^{\circ}$, $30^{\circ}$, $45^{\circ}$ 그리고 $-45^{\circ}$), 그리고 출구 저항이 정백미의 질과 양, 정백효율 그리고 정백실내의 정백압력 등에 미치는 영향을 규명하기 위해 수행되었다. 이 실험에 사용된 공시 정미기는 임도정 공장에서 널리 사용되고 있는 흡입마찰식이었며, 사용된 시료는 밀양 23호인 통일계품종이었다. 각 처리마다 동력 소모량과 정백실내의 정백압력을 측정하기 위해서 "KYOWA" 스트레인 게이지 시스템(strain gauge system), 토오크 변환기, 압력변환기 등이 사용되었다. 본 실험 결과를 요약하면 다음과 같다. 1) 정백과정중에 정백실내의 정백압력은 입구에서 가장 높았고 출구쪽으로 갈수록 점차 감소하였다. 평균 정백압력도 순환 횟수에 따라서 변화 하였는데 첫번째 순환에서 가장 높았고 순환횟수가 증가함에 따라 감소하였다. 2) 본 실험에서 사용한 출구저항 수준은 출구저항 수준 1에서 요구되는 정백도의 백미를 얻기 위한 순환 횟수는 2회 이었고 출구저항 수준 2에서는 4회 이었는데, 이를 출구저항 수준이 정백압력, 정백율, 완전미수율 및 도정 효율에 가장 큰 영향을 주었다. 3) 스크린에 뚫려있는 슬랏 각도가 $15^{\circ}$에서 $45^{\circ}$로 증가함에 따라서 정백실내의 평균 정백압력은 감소하였고, 완전미수율과 도정 효율은 증가하였으나, 일반적으로 도정수율은 감소하는 경향을 보였다. $-45^{\circ}$의 슬랏 각도를 가진 스크린에서는 슬랏 각도 $15^{\circ}$인 스크린에서와 거의 비슷한 정백압력 수준을 나타냈으나 완전미와 정백미의 생산은 매우 낮았다. 4) 스크린 표면에 기다란 강편 (보통 "띠"라고 부름)을 붙인 원통과 12각형의 스크린에서는 강편을 붙이지 않은 6각형과 8각형 스크린에서 보다는 비교적 높은 정백압력을 나타냈다. 전자는 후자에 비해서 정백효율은 높았으나 완전미수율은 떨어졌다. 5) 정백실내에서 가장 낮은 정백압력을 나타낸 8각형 스크린은 높은 도정수율과 완전미수율을 가져왔으나 상대적으로 정백효율은 낮게 나타났다. 6) 정백실내의 반경 방향의 평균 정백압력($P_R$)과 완전미수율($Y_h$)은 다음과 같은 1차적인 역비례 관계가 있었으며(평균 정백압력 범위는 0.5-0.9kg/$cm^2$), $Y_h=-28.661P_R+84.860$ ($r^2=0.858$) 정백효율($Y_e$)과 정백압력($P_R$) 사이에는 다음과 같은 2차적인 관계가 존재함을 알 수 있었다. $Y_e=-597.5P_{R^2}+929.96P_R-210.15$ ($r^2=0.759$) 정백효율은 정백압력이 0.7-0.8kg/$cm^2$일 때 가장 높았으며, 이때 변이도 가장 심한 것으로 나타났다.

  • PDF

A Design of the Cooling Channel in the Bipolar Plate of PEMFC Using Experimental Design Method (실험설계법을 이용한 연료전지 분리판 냉각채널 설계)

  • Zhang, Xia;Kwon, Oh-Jung;Oh, Byeong Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.545-552
    • /
    • 2015
  • The heat generation in PEMFC is proportional to the electrical power output. Therefore, when the fuel cell produced the maximum output, the maximum heat was generated. In order to maintain the performance of the fuel cell, thermal management is as important as pressure and humidity conditions of the reactive gas. In this study, considering the thermal management for the maximum output operation, the optimal cooling channel design specifications of bipolar plate are found for the highest cooling performance. In the current bipolar plate research, many studies focused on analyzing various factors individually but there is no more study on the interaction between design factors. In this study, the heat transfer was simulated by COMSOL Multiphysics with the main design factors which are designated shape, width and rib length. One of the experimental design methods, general full factorial design method, was used to analyze the main factor and interaction on average temperature and maximum temperature for the design specification of fuel cell bipolar plate. When analysis result shows that all of these three factors are highly important, it can confirm that the interaction occurs between the factors.

Application of Response Surface Methodology for the Optimization of Process in Food Technology (반응표면분석법을 이용한 식품제조프로세스의 최적화)

  • Sim, Chol-Ho
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.97-115
    • /
    • 2011
  • A review about the application of response surface methodology in the optimization of food technology is presented. The theoretical principles of response surface methodology and steps for its application are described. The response surface methodologies : three-level full factorial, central composite, Box-Behnken, and Doehlert designs are compared in terms of characteristics and efficiency. Furthermore, recent references of their uses in food technology are presented. A comparison between the response surface designs (three-level full factorial, central composite, Box-Behnken and Doehlert design) has demonstrated that the Box-Behnken and Doehlert designs are slightly more efficient than the central composite design but much more efficient than the three-level full factorial designs.

Identifying Factors Affecting Surface Roughness with Electropolishing Condition Using Full Factorial Design for UNS S31603 (UNS S31603에 대하여 완전요인설계를 이용한 전해연마조건에 따른 표면 거칠기의 유효인자 산출)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.314-324
    • /
    • 2022
  • The objective of this investigation was to indentify major factors affecting surface roughness among various parameters of electropolishing process using the design of an experiment method (full factorial design) for UNS S31603. Factors selected included electrolyte composition ratio, applied current density, and electrolytic polishing time. They were compared through analysis of variance (ANOVA). Results of ANOVA revealed that all parameters could affect surface roughness, with the influence of electrolyte composition ratio being the highest. As a result of surface analysis after electropolishing, the specimen with the deepest surface damage was about 35 times greater than the condition with the smallest surface damage. The largest value of surface roughness after electropolishing was higher than that of mechanical polishing due to excessive processing. On the other hand, the smallest value of surface roughness after electropolishing was 0.159 ㎛, which was improved by more than 80% compared to the previous mechanical polishing. Taken all results together, it is the most appropriate to perform electrolytic polishing with a sulfuric acid and phosphoric acid ratio of 3:7, an applied current density of 300 mA/cm2, and anelectrolytic polishing time of 5 minutes.

Analysis of the incidence of dementia in complete edentulous patients using the National Health Insurance Service-Elderly Cohort Database (NHIS-ECD) (국민건강보험공단 노인 코호트 자료를 이용한 완전 무치악 환자의 치매 발병률 분석)

  • Koo, Bonsuk;Yoo, Jin-Joo;Kim, Manyong;Lim, Hyunsun;Yoon, Joon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.193-200
    • /
    • 2020
  • Purpose: To investigate the relationship between dementia and complete tooth loss on both sides or one side using large demographic data. Materials and methods: A retrospective cohort study was designed using the National Health Insurance Service-Elderly Cohort Database (NHIS-ECD) which was established for people over the age of 60. The experimental group was the complete edentulous cohort, which had a history of treatment for national health insurance covered complete denture on both sides or one side from July 1, 2012 to December 31, 2013. And the control group was the dentulous cohort, which had a history of conservative dental treatment for the same period. All subjects had no history of diagnosis or treatment of dementia during this time. These cohorts were matched 1:1 by age, gender, and place of residence according to the propensity score matching method. Then the incidence of dementia was compared between these cohorts. Results: Compared with those groups, the incidence of dementia was significantly higher in the experimental group (12.13%) than in the control group (9.74%) (P<.05). No clear association between other factors has been identified. Conclusion: The analysis of large-scale demographic data shows that the incidence of dementia is high in complete edentulous patients on both sides or one side.

Study on Power Characteristics in the PEMFC Parallel Channel with Baffles through Numerical Analysis (전산해석을 통한 PEMFC 평행 유로에서 Baffle에 의한 출력특성 분석)

  • Kwon, Oh-Jung;Oh, Chang-Mook;Shin, Hee-Sun;Oh, Byeong Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.193-200
    • /
    • 2014
  • Research on flow channel designs of the separate plates is necessary to improve the PEMFC performance. On concerning the performance improvement of PEMFC, many recent studies have been made on the interdigitated flow channel using forced convection. In this paper, the interdigitated flow channel is similarly applied on the parallel flow channel with a baffle or baffles. Numerical analysis is performed by using a commercial multiphysics program, which is called COMSOL, on the parallel channel with the fully blocked baffle(FBB) and there are three variables, the position of baffle, flow direction and flow velocity. Each power of the variables is resulted from the fixed 0.5V, the voltage from 80 percents of the maximum power. Finally, based on the full factorial designs(FFD), one of the design of experiments(DOE), each factor which has several levels lead to the conclusion. The analysis of the main effects and interactions of the factors is useful to find the most influenced factor to improve the power.