• Title/Summary/Keyword: 완난류

Search Result 36, Processing Time 0.023 seconds

Frictional Wave Energy Dissipation Factor on Uniform Sloping Beach (일정경사면에서의 파에너지 바닥마찰손실계수)

  • Yoo, Dong-Hoon;Eum, Ho-Sik;Jang, Moon-Yup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • Wave energy is dissipated mainly by friction on the seabed until the waves reach the surf zone. Many researchers have investigated the mechanism of wave friction and the bottom shear stress induced by wave motion at a certain point is now well estimated by introducing the wave friction factor related to the near bed velocity given by linear wave theory. The variation of wave energy or wave height over a long distance can be, however, estimated by an iteration process when the propagation of waves is strongly influenced by bed friction. In the present study simple semi-theoretical equation has been developed to compute the variation of wave height for the condition of wave propagation on a constant beach slope. The ratio of wave height is determined by the product of shoalng factor and wave height friction factor (frictional wave energy dissipation factor). The wave height estimated by the new equation is compared with the wave height estimated by the solution of numerical integration for the condition that the waves propagate on a constant slope.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow (수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.

Work-rate Estimation for Predicting Fretting-wear in SG Tubes due to Turbulence Excitation (난류 가진에 의한 증기발생기 전열관의 마모 일률 평가)

  • 조봉호;유기완;박치용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.115-118
    • /
    • 2004
  • In this study, amplitudes of turbulence excitation are obtained for selected tubes inside the KSNP SG and their normal work-rates are investigated to estimate the magnitude of fretting-wear. From the results of numerical calculation, row 40&41 tubes show the maximum work-rates. Up to this row number, the work-rates inside the row 41 have much larger values than those of outside tubes. This phenomenon reveals the particular central one which has larger normal work-rate than that of outside zone. It turns out that both of the higher local mode at the U-bend region and the larger value of effective mass in the central region Increase the normal work-rate enormously.

  • PDF

Wear Characteristics of Multi-Span Tube Due to Turbulence Excitation (다경간 전열관의 난류 여기에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.919-924
    • /
    • 2005
  • Fretting-wear caused by turbulence excitation for KSNP(Korea standard nuclear power plant) steam generator is investigated numerically. Secondary sides density and normal velocity are obtained by the thermal-hydraulic data of the steam generator. Because nonlinear finite element analysis is complex and time consuming, work rate is estimated by using linear analysis for simple straight 2-span tube. Wear volume and depth by using work rate calculation are estimated. Span length, secondary side fluid density and normal velocity are adopted to study the effects on the fretting-wear by turbulence excitation. When secondary sides density and normal velocity is increased, It turns out that secondary side density and normal gap velocity are very important paramater for fretting-wear phenomena of the steam generator.

  • PDF

Study on the Fluid-elastic Instability and Turbulence Excitation for the Steam Generator Tube (증기발생기 전열관의 유체탄성불안정성 및 난류가진 특성 연구)

  • 유기완;박치용;박수기;이종호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1400-1405
    • /
    • 2001
  • In this study, an analysis program to assess the susceptibility of steam generator tubes due to the flow-induced vibration was developed. Analysis of fluid-elastic instability and random turbulence excitation for the U-tube bundle in CE-type steam generator was accomplished. The effective mass distribution along the U-tube was obtained to calculate the natural frequency and dynamic mode shape. Finally, stability ratios and rms vibration amplitude for selected tubes are obtained.

  • PDF

A study on Aerodynamic Characteristics of Clark-Y Airfoil using EDISON_CFD (EDISON_CFD를 활용한 Clark-Y 에어포일의 공력 특성 연구)

  • Kim, Ho-Hyeon;Jo, Ha-Na;Yu, Gi-Wan
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.659-662
    • /
    • 2014
  • 본 연구에서는 전산유체 해석프로그램인 EDISON_CFD를 이용하여 Clark-Y 에어포일의 공력특성 변화를 수치해석하고, 여러 가지 받음각의 변화를 통해 양력계수, 항력계수, 양항비 등을 도출하였다. 공력해석을 위한 조건으로 압축성 Navier-Stokes 방정식에 난류 유동조건을 적용하였다. 해석 결과는 에어포일 공력해석 툴로 널리 알려져 있는 XFOIL을 이용하여 비교 검토하였다.

  • PDF

Time of Concentration on Impervious Overland (불투수층 사면에서의 도달시간)

  • Yu, Dong-Hun;Jeon, U-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.195-205
    • /
    • 2000
  • Many types of factors were devised to calculate time of concentration. Singh(976) derived time of concentration of overland flow using kinematic wave theory for plane, converging, and diverging geometric configurations. The present paper investigated the time of concentration for particularly plane geometric configuration. A theoretical equation of time of concentration is derived based on the assumption of impervious overland flow as in the open channel flow. The study characterized the overland flow by many types of characteristic flow such as rough turbulent flow, smooth turbulent flow, laminar flow, and then suggested a theoretical equation on each flow condition. The present paper further considered the rainfall intensity as a main factor and devised an approximate composite equation reflecting the effect of rainfall intensity given at various return periods.

  • PDF

Wear Characteristics of Multi- span Tube Due to Turbulence Excitation (다경간 전열관의 난류 가진에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Sung, Bong-Zoo;Park, Chi-Yong;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.

Improvement of Einstein's Suspended Load Equation (Einstein 부유사량 산정식의 개선)

  • Yu, Dong-Hun;Sin, Seung-Ho;Im, Hak-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.815-825
    • /
    • 2000
  • In the present work Einstein's(l942) suspended load equation IS refined in vanous aspects. After checking the flow characteristics a new method is presented for the estimation of zero velocity point at the condition of smooth turbulent flow, and non-dimensional number of suspended load is introduced for the clear representation of suspended load equation. And a recent equation of bed load is employed in order to calculate accurately the sediment concentration at a reference point. Several approximation equations are also developed to compute directly or explicitly two integrals introduced in the equations. The refined equation has been tested against the measurement data collected by Brownlie(l981) in comparison with Einstein's original equation.uation.

  • PDF

Characteristics of Flow-induced Vibration for CE Type Steam Generator Tube with Various Column and Row Number (CE형 증기발생기 전열관의 행열 변화에 따른 유체유발진동 특성)

  • Ryu, Ki-Wahn;Cho, Bong-Ho;Park, Chi-Yong;Park, Su-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.927-932
    • /
    • 2002
  • The stability ratio and vibrational amplitude of each tube inside a steam generator have different values. We estimate the characteristics of flow-induced vibration for CE type steam generator with various column and row number of the tube. To obtain the thermal-hydraulic data and stability ratio we use the ATHOS3-MODI and PIAT-FEI/TE code respectively. It turns out that the steam generator has a bounded central zone with the distributed values of the stability ratio and the vibrational amplitude, and those values across the zone boundary become decreased.

  • PDF