• Title/Summary/Keyword: 완경

Search Result 36, Processing Time 0.018 seconds

Studies on the Morphological, Anatomical and Physiological Characters in Populus alba × glandulosa and its Parent (Populus alba × glandulosa 와 그의 양친종(両親種)의 형태(形態), 해부학(解剖學), 생리학적(生理学的) 연구(硏究))

  • Kim, Chung Suk;Chon, Sang Keun;Hwang, Jin Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.49 no.1
    • /
    • pp.11-31
    • /
    • 1980
  • The morphological, anatomical and physiological traits were eximined for Populus alba ${\times}$ glandulosa which is an important planting species in Korea. The results obtained are as follows: 1. External characters in the leaf shape and chaff shape in the catkin were inherited as incomplete dominance but nectar gland was inherited as dominance. 2. Among the 15 selected clones, 9 clones were male, 2 clones female and 2 clones monoecious. 3. There were well-developed cork layers and bast fiber bundles in the bark. 4. Primordial leaves composed of 3 layers of cells and those undifferentiated into palisade and spongy parenchymas differed in its origin. 5. Leaf scare consisted of two kinds of tissues; one is connected to vascular bundle and the other not to vascular bundle. Tissues which had been connected to vascular bundle were isolated with only 2 or 3 layers of cork cells from the outside. 6. There was complicated arrangement in the vascular bundle of petioles. 7. Growth of the hybrid was sensitively influenced by external temperature, day-length and amount of light. In particular, it was apparent in height growth. 8. Flatness, loam soils and a $60{\times}60cm$ spacing might be best factors for the growth of P. alba ${\times}$ glandulosa. 9. The rooting of 15 clones was dependant upon external factors. 10. The growth of P. alba ${\times}$ glandulosa was best at around 80% of soil moisture content on the basis of plot water capacity. 11. Temperature difference between inside and outside stems below 100cm during the winter was the greatest at the south among seasons and among directions. 12. The sap movement was markedly influenced by air temperature, relative humidity in forest stand and moisture content in stem. 13. Total sugars in the cortex changed with season but did not differ in the dircetion of the stem. 14. Isoperoxidase variations in the leaf were different among 15 clones. Thus, it may be useful as a criterium for clonal identification. 15. The rate of soil moisture content decreased at a rapid slope was faster than that at a slow slope. Poor growth of P. alba ${\times}$ glandulosa at the slope was probably due to depletion of soil moisture.

  • PDF

Interactions and Changes between Sapflow Flux, Soil Water Tension, and Soil Moisture Content at the Artificial Forest of Abies holophylla in Gwangneung, Gyeonggido (광릉 전나무인공림에서 수액이동량, 토양수분장력 그리고 토양함수량의 변화와 상호작용)

  • Jun, Jaehong;Kim, Kyongha;Yoo, Jaeyun;Jeong, Yongho;Jeong, Changgi
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.496-503
    • /
    • 2005
  • This study was conducted to investigate the influences of sapflow flux on soil water tensions and soil moisture content at the Abies holophylla plots in Gwangneung, Gyeonggido, from September to October 2004. The Abies holophylla had been planted in 1976 and thinning and pruning were carried out in 1996 and 2004. Sapflow flux was measured by the heat pulse method, and soil water tension was measured by tensiometer at hillslope and streamside. Time domain reflectometry probes (TDR) were positioned horizontally at the depth of 10, 30 and 50 cm to measure soil moisture content. All of data were recorded every 30 minutes with the dataloggers. The sapflow flux responded sensitively to rainfall, so little sapflow was detected in rainy days. The average daily sapflow flux of sample trees was 10.16l, a maximum was 15.09l, and a minimum was 0.0l. The sapflow flux's diurnal changes showed that sapflow flux increased from 9 am and up to 0.74 l/30 min. The highest sapflow flux maintained by 3 pm and decreased almost 0.0 l/30 mm after 7 pm. The average soil water tensions were low ($-141.3cmH_2O$, $-52.9cmH_2O$ and $-134.2cmH_2O$) at hillslope and high ($-6.1cmH_2O$, $-18.0cmH_2O$ and $-3.7cmH_2O$) at streamside. When the soil moisture content decreased after rainfall, the soil water tension at hillslope responded sensitively to the sapflow flux. The soil water tension decreased as the sapflow flux increased during the day time, whereas increased during the night time when the sapflow flux was not detected. On the other hand, there was no significant relationship between soil water tension and sapflow flux at streamside. Soil moisture content at hillslope decreased continuously after rain, and showed a negative correlation to sapflow flux like a soil water tension at hillslope. As considered results above, it was confirmed that the response of soil moisture tension to sapflow flux at hillslope and streamside were different.

Growing Environment Characteristics and Vegetation Structure of Lonicera harae, Medicinal Plant (약용식물 길마가지나무 자생지의 생육환경특성과 식생구조)

  • Son, Yonghwan;Park, Sunghyuk;Jeong, Daehui;Cho, Hyejung;Son, Hojun;Jeon, Kwonseok
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.297-310
    • /
    • 2021
  • Lonicera harae is a species of shrub in the Caprifoliaceae family, mostly distributed in East asia. So far, the related research on the genus of Lonicera is insufficient compared to the Lonicera japonica belonging to the same genus, which requires attention to domestic native plants. Therefore, this study aims to provide baseline data for cultivation and utilization through the growth environment and vegetation structure of the natural habitat. Lonicera harae, which plant found throughout the Korean Peninsula. The natural habitats of Lonicera harae is the forest, valley and lowland areas of the southern region. study examined 24 quadrats in 11 regions, including Gwangju, Wanju and Namhae. As a result, environmental condition of Lonicera harae was 8 to 483 m above sea level, normally distributed over 173 m, Slope was 5 to 25 degree with 8.5 degree on average. The list of plants were classified as a total of 229 taxa comprising 80 families, 166 genus, 198 species, 3 subspecies, 24 varieties, 4 forma. As a result of the clustering analysis, the three clusters were divided into three groups; Robinia pseudoacacia, Zelkova serrata, Larix kaempferi. Species diversity was 1.399 and Dominance and Evenness were found to be 0.978 and 0.022 respectively.

Analysis of the Relationship Between the Characteristics of the Wind Damaged Trees and the Wind Caused by Typhoon 'Kompasu' (태풍 곤파스에 의해 발생한 풍도목 특성과 바람과의 관계 분석)

  • Youn, Ho Joong;Park, Ki Hyung;Lee, Myungbo;Won, Myoungsoo;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.246-255
    • /
    • 2011
  • This study was carried out to investigate the characteristics of wind damaged trees in the Hongneung Arboretumin Korea. Many trees in the Hongneung Arboretum were damaged by the 'Kompasu', the seventh typhoon in the year of 2010 having strong impacts on the central region of Korea. Damaged trees were divided into 3 damage types: windthrow, slanted and broken trees. Most of damaged trees (97.3%) were found at low slope (below 15 degree) or medium slope (15~20 degree). The 45.3% of damaged trees were coniferous and 54.7% were deciduous trees. The wind speed was recorded for the duration of the typhoon from 04:00 AM to 12:00 PM on September 2. The average wind speed and the maximum instantaneous wind speed inside the forest were 1.4 m/sec and 3.5 m/sec, respectively. The highest peak of the average and the maximum instantaneous wind speed inside of forest, 3.4 m/sec and 8.7 m/sec respectively, were recorded at 06:10 AM on September 2. To analyze relationship between wind characteristics and the damage types, the average wind speed and the frequency of wind wave was compared to those of pre-typhoon period (Feb. 13, Feb. 20, Apr. 21, Oct. 16, 2009 and Mar. 20, 2010). The results indicated that the damaged trees were affected by frequent wind wave rather than the wind speed itself. Also average wind direction inside the forest was analyzed to investigate the impact of wind direction on the damaged trees. The wind had mainly blown from SE and SW, and the maximum instantaneous wind direction was SE direction overall. Most of the damaged trees (84.0%) had fallen down to the NW or NE direction. This result showed that the fallen direction of the damaged trees and wind direction was highly related. Therefore, we found that the frequency of wind wave was the main factor of wind damages during the typhoon 'Kompasu' and wind direction was highly related to the fallen direction.

Changes in Distribution of Debris Slopes and Vegetation Characteristics in Mudeungsan National Park (무등산국립공원의 암설사면 분포변화 및 식생 특성)

  • Seok-Gon Park;Dong-Hyo Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • We analyzed the distribution area of debris slopes in Mudeungsan (Mt. Mudeung) National Park by comparing aerial photos of the past (1966) and the present (2017) and identified the vegetation characteristics that affect the change in the area of the debris slopes by investigating the vegetation status of the debris slopes and the surrounding areas. The area of debris slopes in Mt. Mudeung appears to have been reduced to a quarter of what it used to be. Debris slopes here have decreased at an average rate of 2.3 ha/yr over 51 years by vegetation covers. Notably, most of the small-area debris slopes in the low-inclination slopes disappeared due to active vegetation coverage. However, there are still west-facing, south-west-facing, south-facing, and large-area debris slopes remaining because the sun's radiant heat rapidly raises the surface temperature of rock blocks and dries moisture, making tree growth unfavorable. Because of these locational characteristics, the small-scale vegetation in the middle of Deoksan Stony Slope, which is the broadest area, showed distinct characteristics from the adjacent forest areas. Sunny places and tree species with excellent drying resistance were observed frequently in Deoksan Stony Slope. However, tree species with high hygropreference that grow well in valleys with good soil conditions also prevailed. In some of these places, the soil layer has been well developed due to the accumulation of fine materials and organic matter between the crevices of the rock blocks, which is likely to have provided favorable conditions for such tree species to settle and grow. At the top of Mt. Mudeung, on the other hand, the forest covered the debris slopes, where Mongolian oaks (Quercus mongolica) and royal azaleas (Rhododendron schlippenbachii), which typically grow in the highlands, prevailed. This area was considered favorable for the development of vegetation for the highlands because the density of rock blocks was lower than in Deoksan Stony Slope, and the soil was exposed. Moreover, ash trees (Fraxinus rhynchophylla) and Korean maple trees (Acer pseudosieboldianum) that commonly appear in the valley areas were dominant here. It is probably due to the increased moisture content in the soil, which resulted from creating a depressive landform with a concave shape that is easy to collect rainwater as rock blocks in some areas fell and piled up in the lower region. In conclusion, the area, density of the rock blocks, and distribution pattern of rock block slopes would have affected the vegetation development and species composition in the debris slope landform.

Soil Moisture Influence on Growth of Cover Vegetations and Water Economy (토양수분(土壤水分)이 피복용식물(被覆用植物)의 생장(生長) 및 수분경제(水分經濟)에 미치는 영향(影響))

  • Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.33 no.1
    • /
    • pp.1-32
    • /
    • 1977
  • This study has been made to find out more effective way of vegetation establishment on severely denuded forest land from the viewpoint of soil moisture regimes. Various environmental factors were measured to estimate soil moisture conditions of different sites. Soil moisture influence on growth of over vegetations, water requirement and drought resistance were analyzed. The efficiency of water use was also reckoned at different fertility levels and different soil moisture conditions. This research is composed of field experiment and green house experiment. Field experiment includes height growth, survival and coverage analysis of cover vegetations (Robinia pseudoacacia L., Lespedeza bicolor Turcz, Arundinella hirta Tanaka var. ciliare Koidzumi.) with 4 fertility level treatments on 3 slopes (Steep: $37^{\circ}$, Moderate: $25^{\circ}$, Gentle; $17^{\circ}$) during dry season (1 April-30 June) and wet season (1 July-10 September). At the same time temperature, relative humidity and precipitation were measured to understand the environmental changes. Soil moisture conditions were measured with soil moisture meter with 24 soil cells. Green house experiment comprised height, fresh weight and dry weight measurements of cover vegetations with 4 fertility levels and 3 moisture conditions for 70 days. The results extracted from experiments are as follews. 1. Cover vegtations have 3 patterns of water requirement at the early stage of growth. a) Robinia type has high water requirement and weaker drought resistance. b) Lespedeza type has low water requirement and stronger drought resistance. c) Arundinella type has moderate water requirement and weaker drought resistance. 2. The vegetations have different optimum fertility levels in different soil moisture supply condition. a) Robinia needs a low fertility level in dry condition and a high level in wet condition. b) Lespedeza needs only low fertility level in all conditions. c) Arundinella needs a low fertility level in dry condition and a high level in wet condition. 3. The efficiency of water use (Water/1g dry weight) by fertility levels is different from one another. Robinia and Arundinella have a good efficiency at low fertility level in dry condition and at high fertility level in wet condition. Lespedeza has a good efficiency at low fertility level in all conditions. 4. $P_2O_5$ requirement of Robinia and Lespedeza is high, but that of Arundinella is low. Soil moisture condition has a great influence on $P_2O_5$ absorption in dendued forest land. Once Vegetations are established on suitable sites with optimum fertitity level according to different moisture condition, even the small amount of soil water in denuded land can he used with high efficiency and the effect of fertility treatment can be maximized.

  • PDF