• Title/Summary/Keyword: 와류 확산

Search Result 48, Processing Time 0.023 seconds

Sedimentation Deposit in Surcharged Manhole with 90 Degree Bend (과부하 $90^{\circ}$ 접합맨홀에서의 유사퇴적)

  • Song, Ju-Il;Kim, Ju-Hyung;Rim, Chang-Soo;Yoon, Sei-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.317-317
    • /
    • 2011
  • 맨홀 및 관로에 퇴적되는 유사는 우수관거의 통수능을 감소기키고 우수관거 시스템의 효율을 저하시켜, 맨홀에서 역류를 발생시켜 저지대 침수의 한 원인인 되고 있다. 또한 관거내에서 유수가 일정한 유속을 확보하지 못하면 오염물이 침전되고, 관거내 유하시간이 길어져 침전물 부패로 인한 황화물질 및 악취 등이 발생할 수 있다. 따라서 우수 및 하수관거 시스템에서 유사와 관련된 주된 연구는 관거내의 유사거동 특성을 규명하고자 하는 것이었다. 그러나 맨홀과 관련하여서는 맨홀내의 오염물 지체시간 및 확산 특성분석이 전부였고, 유사의 퇴적 및 배출 등과 관련된 거동특성 연구는 매우 미흡한 실정이다. 본 연구에서는 유입관과 유출관이 $90^{\circ}$로 접합된 맨홀을 대상으로 수리실험을 실시하고, 맨홀형태(사각형, 원형), 유사유입형태(연속주입, 일정기간주입), 유사종류(주문진표준사, 모래), 유사유입량 및 맨홀내부형상 변화에 따른 맨홀내 유사퇴적량을 확인하였다. 실험결과 그림 1과 같이 $90^{\circ}$ 접합맨홀에서는 유사유입형태와 무관하게 유입유사량이 증가할수록 퇴적량 또한 증가하였다. 그러나 유사퇴적량은 사각형맨홀보다 원형맨홀에서 적었다. 이는 관거가 $90^{\circ}$로 접합된 맨홀내에서의 유사거동 양상은 우선 유입되는 유사가 맨홀바닦에 퇴적되고 와류에 의해 부유되는 유사가 유출관을 통해 배출되는데 사각형맨홀에 비하여 원형맨홀에서 와류가 더 크게 형성되기 때문인 것으로 판단된다. 유사가 일정기간주입되는 경우 원형맨홀 내부에 퇴적되는 유사량은 거의 없었다. 사각형맨홀내부에 벤칭을 설치한 경우 설치전과 비교하여 퇴적량은 50%이상 저감되었고, 일정기간주입시에는 벤칭 설치 후 유사퇴적량은 거의 없었다. 유입유사가 모래인 경우 맨홀내 퇴적량은 주문진표준사와 비교하여 증가하였다. 모래는 주문진 표준사와 비교하여 중량이 크다. 따라서 같은 흐름조건에서 주문진표준사와 비교하여 부유되는 유사량이 적고, 배출되는 유사량 또한 적었다. 유량과 관거유속이 동일한 조건에서 유출관과 유입관이 일직선상으로 연결된 중간맨홀내부에 퇴적된 주문진표준사의량과 비교하여 $90^{\circ}$ 접합맨홀의 퇴적량이 상대적으로 적었다. 이 또한 앞서 기술한 와류의 영향으로 판단된다. 일반적으로 $90^{\circ}$접합맨홀내부에서 발생하는 와류가 중간맨홀보다 크고, 이로 인해 에너지손실은 커지지만 유사거동과 관련하여서는 와류가 크게 발생하는 맨홀조건에서 퇴적량이 적음을 실험적으로 확인하였다.

  • PDF

Flame-Vortex Interaction and Mixing in Turbulent Hydrogen Diffusion Flames with Coaxial Air (동축공기 수소확산화염에서 화염-와류 상호작용 및 혼합)

  • Kim, Mun-Ki;Oh, Jeong-Seog;Choi, Young-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.149-154
    • /
    • 2007
  • This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen nonpremixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NOx emissions. Acoustic excitation causes the flame length to decrease by 15 % and consequently, a 25 % reduction in EINOx is achieved, compared to a flame without acoustic excitation. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NOx emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface.

  • PDF

Numerical Evaluation of Hovering Performance of Next Generation Rotor Blade(Nrsb-1) (차세대 로터 블레이드(NRSB-1)의 제자리 비행 성능 해석)

  • Lee,Gwan-Jung;Hwang,Chang-Jeon;Kim,Jae-Mu;Ju,Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.69-74
    • /
    • 2003
  • By employing vane tip concept, a new rotor blade (NRSB-I) has been designed to enhance the noise characteristics of BERP blade. Numerical analyses have been performed for hovering rotor and the results are compared with respect to those of original BERP blade. Although the thrust of designed rotor decreases by 6-7% due to cutout at the tip region, the results indicate that the actual performance loss is negligible because power reduction is greater than thrust loss. It is also found that aerodynamic fence is required at the outboard kink to obtain clearly separated twin-vortices because the vortex generated at kink is diffused during the convection over the blade surface.

Numerical Study for Kerosene/LOx Supercritical Mixing Characteristics of Swirl Injector (동축와류형 분사기의 케로신/액체산소 초임계 혼합특성 수치적 연구)

  • Heo, Jun-Young;Kim, Kuk-Jin;Sung, Hong-Gye;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.103-108
    • /
    • 2011
  • The turbulent mixing of a kerosene/liquid oxygen coaxial swirl injector under supercritical pressures have been numerically investigated. Kerosene surrogate models are proposed for the kerosene thermodynamic properties. Turbulent numerical model is based on LES(Large Eddy Simulation) with real-fluid transport and thermodynamics over the entire pressure range; Soave modification of Redlich-Kwong equation of state, Chung's model for viscosity/conductivity, and Fuller's theorem for diffusivity to take account Takahashi's compressible effect. The effect of operating pressure on thermodynamic properties and mixing dynamics inside an injector and a combustion chamber are investigated. Power spectral densities of pressure fluctuations in the injector under various chamber pressure are analyzed.

  • PDF

Dynamic Characteristics Analysis of the Cryogenic Nitrogen Injection of Swirl Injector using POD and DMD (POD와 DMD를 이용한 와류형 분사기의 극저온 질소 분무 동적 특성 분석)

  • Kang, Jeongseok;Sung, Hong-Gye;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-9
    • /
    • 2017
  • The cryogenic nitrogen spray of a swirl injector has been numerically investigated using three dimensional LES turbulence model to analyze the dynamic characteristics under supercritical condition. To predict the precise nitrogen properties under supercritical condition, SRK equation of state, Chung's method for viscosity and thermal conductivity and Takahashi's correlation based on Fuller's theory for diffusion coefficient are implemented. The complex flow structures due to interaction between flow field and acoustic field are observed inside and outside the injector under supercritical condition. FFT, POD, and DMD techniques are employed to understand the coherent structures. By implementing the FFT, the dominant frequencies are identified inside and outside the injector. The coherent flow structures related to the dominant frequencies are visualized using the POD and DMD techniques. In addition, the DMD provides the damping coefficient which is related with the instability prediction.

Experimental Study on Heat Flow According to the Wind Velocity in an Underground Life Space (지하생활공간 화재시 풍속에 따른 열유동 특성 연구)

  • Kim, Young-No;Suk, Chang-Mok;Kim, Wha-Jung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.61-68
    • /
    • 2007
  • The purpose of this study analyzes heat flows and fire behavior through a reduced-scale model experiments about change of wind velocity in underground life space. When the wind velocity is increased the temperature rise time of the fire room was risen fast. And temperature of fire room was increased. And increase of wind velocity displayed maximum temperature at an opening of the fire room. Heat flows by fire spread increase size of smoke occurrence and flame, and displayed high temperature distribution in passageway than inside of neighborhood department promoting eddy flow spread as wind velocity increases. Finally, heat flows are decided by wind and wind velocity at fire of underground life space, and Wind velocity increases, temperature increase and decrease could confirm that is gone fast.

Temporally developing behavior of an evolving jet diffusion flame (전개확산제트화염의 시간 발달 거동)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.486-493
    • /
    • 1997
  • Experimental investigations on the comparison of developments between transient jets and evolving jet diffusion flames have been made in initial injection period. To achieve this experiment, an ignition technique using a residual flame as the ignition source is devised. High speed Schlieren visualizations, and measurements including jet tip penetration velocities and jet widths of the primary vortex are employed to examine the developing processes for several flow conditions. It is seen that the developing behaviors in the presence of flame are greatly different from those in transient jet, and thus the flow characteristics in the transient part are also modified. The discernible differences are shown to consist of the delay of the rollup of the primary vortex, the faster spreading after the rollup due to exothermic expansion, and the survival of only a primary vortex. The growth of primary vortex in the transient jet is properly explained through an impulsively started laminar vortex prior to the interaction. It is also found that the jet tip penetration velocity varies with elapsed time and an increase in Res gives rise to a higher tip penetration velocity.

The effect of free stream turbulence on the near wake behind a circualr cylinder (원주의 근접후류에 대한 자유흐름 난류강도의 영향)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2062-2072
    • /
    • 1991
  • The effect of free stream turbulence on the flow characteristics behind a circular cylinder is investigated in the present experimental study. The various free stream turbulent intensities are generated by different combinations of cylinder locations and grid shapes. Split film sensor with constant temperature anemometer is used to measure the local instantaneous velocity components. Experimental results demonstrate the large scale coherent structures are rapidly distorted and the Strouhal number is decreased with increasing free stream turbulent intensity.

A Study on Etching Patterns of Copper Surface by Chemical Corrosion (동(銅) 표면(表面)의 화학부식(腐蝕)에 의한 식각(蝕刻) 패턴 연구)

  • Kim, Min-Gun;Seo, Bong-Won
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.77-86
    • /
    • 2000
  • In order to observe the pattern forming of copper plate and chemical corrosion reaction, a study on the effect of the process parameters on the formation of micro-pattern by a photochemical etching of copper plate was carried out. The results are as follows : 1) Etching rate increases as the concentration of etchant increases under the regular condition of the temperature by the increasing of diffusion rate to surface. 2) Etching rate increases as the temperature of etchant increases by the fast acting of the material delivery of diffusion to surface under the regular condition of concentration. 3) It was found that etching speed increases as the material delivery of convection rising increased when the aeration speed of etchant increases. This result was from the fact acted by the material delivery of convection rising rather than material delivery of diffusion to the surface.

  • PDF

Analysis of Flow Field in the Circular Water Tank According to the Number of Baffles (원형 물탱크내의 격벽수에 따른 유동장 해석)

  • Kim, Jung-Hwan;Kang, Dong-Youl;Jung, Tae-Jun;Kim, Se-Young;Choi, Jong-Wook;Chu, Byeong-Gil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • The concentration of residual chlorine should be kept at over 0.1 mg/L in the circular water tank used in a water purification system. Generally, the concentration of residual chlorine depends on the structure and the volume of water tank, and also the water flow rate. To secure the diffusion time is important to the concentration of residual chlorine. For that reason, the baffles are installed in the circular water tank. In the present study, the variations of water and chlorine concentration were obtained with time using the numerical analysis. And also, the streamlines were shown according to the number of baffles. As a results, the vortex flow appeared between baffles, and the diffusion time of chlorine increased with the more number of baffles.