• Title/Summary/Keyword: 와류 주파수

Search Result 99, Processing Time 0.023 seconds

Vortex Shedding Frequency for a 2D Hydrofoil with a Truncated Trailing Edge (뒷날이 잘린 2차원 수중익의 와도 흘림 주파수)

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.480-488
    • /
    • 2014
  • Vortex shedding which is the dominant feature of body wakes and of direct relevance to practical engineering problems, has been intensively studied for flows past a circular cylinder. In contrast, vortex shedding from a hydrofoil trailing edge has been studied to much less extent despite numerous practical applications. The physics of the problem is still poorly understood. The present study deals with $K{\acute{a}}rm{\acute{a}}n$ vortex shedding from a truncated trailing-edge hydrofoil in relatively high Reynolds number flows. The objectives of this paper are twofold. First, we aim to simulate unsteady turbulent flows past a two dimensional hydrofoil through a hybrid particle-mesh method and penalization method. The vortex-in-cell (VIC) method offers a highly efficient particle-mesh algorithm that combines Lagrangian and Eulerian schemes, and the penalization method enables to enforce body boundary conditions by adding a penalty term to the momentum equation. The second purpose is to investigate shedding frequencies of vortices behind a NACA 0009 hydrofoil operating at a zero angle of attack.

An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan (진공청소기 원심홴의 유동과 소음원 해석)

  • 전완호;유기완;이덕주;이승갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF

An Experimental Study on the Frequency Characteristics of Hole Tones Generated by a Circular Jet of Low Speed Impinging on a Plate with a Round Hole (저속의 원형분류가 구멍에 충돌할 때 발생한 구멍음의 주파수특성에 관한 실험적 연구)

  • 이동훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.34-41
    • /
    • 1997
  • The objective of this study is to investigate experimentally the frequency characteristics of the hole tones generated by a circular jet of low speed impinging on a plate with a round hole. The experimental results about the sound spectrum and the time wave of the hole tone are presented and discussed in relation with the hole type, the jet velocity and the distance of the nozzle-to-plate with a round hole. From the sound spectrum and time wave measurements, it is found that the hole tone is generated not only by an interaction of convected vortices with a round hole but also by a series of vortex shedding from jets passing through a hole. The hole tones generated by a feedback mechanism consist of many frequency stages and also have a hysteresis phenomenon like an edge tone. But the hole tones generated by a series of vortex shedding have nothing with the stage characteristics. The frequencies of hole tones are influenced by the jet velocity, the distance of the nozzle-to-plate with a round hole and the hole type.

  • PDF

Experimental Investigation of Noise Generation from the Inter-coach Spacing of a High-speed Train (고속열차의 차간 공간에서 발생하는 소음 특성의 시험적 규명)

  • Choi, Sung-Hoon;Park, Choon-Soo;Park, Jun-Hong;Kim, Sang-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.786-791
    • /
    • 2007
  • Aerodynamically generated noise is dominant when the train speed approaches 300km/h. This noise sources is caused by the turbulent flow separations or vortex shedding from the train structure. Experiments were performed to investigate the characteristics of aerodynamic noise sources generated from exterior of the KTX trains and HSR-350x, especially from the inter-coach spacing. Measurements of both the inside and outside of the cabin are carried out to investigate the characteristics of the noise. Effect of the size of the mud-flap has been investigated through an wind tunnel test and it has been found that the low frequency noise is strongly dependent on the size of the gap. Also performed is an array measurement to locate different noise sources from the high-speed train. spectral characteristics of exterior noise sources are examined.

Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step (와류 안정화를 위한 후향계단 유동 능동제어기법)

  • Lee, Jin-Ik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.246-253
    • /
    • 2013
  • This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.

PowerFLOW Simulation of the Hyundai Simple Model for Sunroof Buffeting (HSM의 썬루프 버페팅을 위한 PowerFLOW 해석)

  • Choi, Eui-Sung;Cyr, Stephane
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.189-197
    • /
    • 2014
  • A simplified model in the shape of a wedge box with an opening on the roof was used to generate buffeting conditions at HMC. These measurements performed in controlled conditions are intended to validate the ability of CFD tools to predict buffeting. The results obtained by PowerFLOW are presented in this paper for buffeting and for the boundary layer development on the roof of the model when the roof opening is closed. The flow mechanisms that explain the behavior of the experimental sound pressure level(SPL) curve are described, and an improved setup is used to reproduce the flow structures that lead to the measured SPL.

FEM acoustic modal analysis due to location of acoustic baffles to avoid acoustic resonance in the tube bank of boiler for power plant (보일러 튜브군의 음향공진 회피를 위한 음향배플의 위치에 따른 FEM 음향모드해석)

  • Ahn, Sung-Jong;Ju, Young-Ho;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.150-154
    • /
    • 2012
  • A flow induced mechanical vibration and acoustic resonance should be considered at design stage because they are mainly occurred in the tube bank of boiler. Acoustic resonance is occurred when the vortex shedding frequency of tube bank coincides with the acoustic natural frequency of the cavity. Effective solution to avoid acoustic resonance is installing acoustic baffles in the tube banks parallelly inside of the flow cavity. Thus, location and number of acoustic baffles should be exactly calculated to eliminate the acoustic resonance. This paper presents case study of acoustic resonance due to inappropriate number and location of acoustic baffles. Measured frequency and mode in the study is verified by FEM acoustic modal analysis. The number and location of acoustic baffles to avoid acoustic resonance are calculated by using FEM acoustic modal analysis.

  • PDF

A CFD Study on Flow Characteristics with Inclined Angles of Two-Dimensional Sharp Plane (CFD에 의한 2차원 Sharp Plane의 각도변화에 따른 유동특성에 관한 연구)

  • 금종윤;박성호;박주헌;송근택;모장오;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.40-45
    • /
    • 2001
  • Recently, the use of numerical simulation has been increased rapidly because of the development of high performance computer systems. The present study is aimed to investigate flow characteristics of a two-dimensional sharp plane. Unsteady calculation by FDM(Finite Difference Method) based upon SOLA scheme which was performed at $Re=2{\times}10^4$in viscous incompressible flow within a finite domain on the irregular grid formation. Total numbers of irregular grids are $8{\times}10^4$. The minimum grid size is 1/100 of the plane length L which is the representative length. The inclined angles of every objects are $15^{\circ}, \;30^{\circ}\;and\; 45^{\circ}.$ And, the edge angle of the plane is $30^{\circ}.$ This study discussed the flow characteristics in term of the turbulent intensity, vorticity and frequency analysis. Developed flows show that the periodic Karman vortices occur at the back of the plane.

  • PDF

Large Eddy Simulation for the investigation of Roll Development Process in a Solid Rocket Motor (고체로켓 내부에서의 Roll 발생 현상 3D LES)

  • Kim, Jong-Chan;Hong, Ji-Seok;Yeom, Hyo-Won;Moon, Hee-Jang;Kim, Jin-Kon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.253-257
    • /
    • 2011
  • Vortex generation mechanism by inhibitor in a solid rocket motor have been investigated by 3D Large Eddy Simulation turbulent model. Most of the result of the present study are in good agreement with experimental data and previous numerical calculation. Vortex generation and breakdown behind inhibitor are periodically observed between inhibitor and nozzle head by flow-acoustic coupling mechanism. Vortex generation frequency is the same as the second-mode frequency in the motor. The roll shape vortex generation behind inhibitor induces non-uniform flow field at the nozzle entrance and its throat.

  • PDF

Internal Flow and Evaporation Characteristic inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface (수직 진동하는 소수성 표면 위 액적의 내부유동 및 증발특성 연구)

  • Kim, Hun;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.579-589
    • /
    • 2015
  • This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.