• Title/Summary/Keyword: 와류장

Search Result 177, Processing Time 0.02 seconds

Numerical Investigation of Ground Effect of Dual Ducted Fan Aircraft During Hovering Flight (제자리 비행하는 이중 덕트 팬 비행체의 지면 효과에 대한 수치적 연구)

  • Lee, Yujin;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.677-690
    • /
    • 2022
  • By using an actuator disk method based flow solver, aerodynamic analysis is carried out for a dual ducted fan aircraft, which is one of the VTOL compound aircrafts, and its associated ground effect is analyzed. The characteristics and accuracy of the solver for ground effect analysis is evaluated through a comparison with the results obtained from the sliding mesh technique. The aerodynamic performance and flow field characteristics with respect to the distance from the ground are analyzed. As the ground distance decreases, the fan thrust increases, but the deterioration of total normal force and hovering flight efficiency is identified owing to the decrease in the vertical force of the duct, fuselage, and wing. By examining the flow field in the bottom of the fuselage, the ground vortices and fountain flow generated by the interaction of the fan wake and ground are identified, and their influence on the aerodynamic performance is analyzed. The strength and characteristics of outwash with respect to the ground distance and azimuth direction are analyzed through comparison/examination of velocity profile. Influence of the ground effect with respect to collective pitch angle is also identified.

Computational Flow Analysis on the Flow Field Improvement of an Indoor RAC by LES (LES에 의한 RAC 실내기의 유동장 개선에 관한 전산유동해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2012
  • The computational flow analysis using LES technique was introduced to investigate the flow field improvement of an indoor RAC chassis consisting of a rear-guider, a stabilizer and a cross-flow fan. This unsteady three-dimensional numerical analysis was carried out by the commercial SC/Tetra software. The edge blocks were adopted in this study as a tool for the flow field improvement of an indoor RAC. In view of the results so far achieved, the edge blocks cause the center of an eccentric vortex to be stable along all length of a cross-flow fan, and then, the static pressure and the velocity vector show a stable distributions. In consequence, because the edge blocks eliminate a reverse flow near the edges, an exhausting flow becomes to be stable and uniform.

Flow Measurements and Performance Analysis using a 5-Hole Pitot Tube and a Rotating Hot-Wire Probe in an Axial Flow Fan (5공 피토관 및 회전 열선 유속계에 의한 축류 홴 내부 유동장 계측 및 평가)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1750-1757
    • /
    • 2003
  • This paper describes the flow measurements inside the blade passage of an axial flow fan by using a rotating hot-wire probe sensor from a relative flame of reference fixed to the rotor blades. The validity of fan rotor designed by a streamline curvature equation was performed by the measurement of the three-dimensional flow upstream and downstream of the fan rotor using a 5-hole pitot tube. The vortical flow structure near the rotor tip can be clearly observed by the measurements of a relative velocity and its fluctuation on quasi-orthogonal planes to a tip leakage vortex. Larger vortical flow, which results in higher blockage in the main flow, is formed according to decrease a flow rate. The vortical flow spreads out to the 30 percent span from the rotor tip at near stall condition. In the design operating condition, the tip leakage vortex is moved downstream while the center of the vortex keeps constant in the spanwise direction. Detailed characteristics of a velocity fluctuation with relation to the vortex were also analyzed.

An Analysis on Cross Flows around a Group of Circular Cylinders (횡유동장에 놓인 원형 실린더 군 주위의 유동장 해석)

  • Sim, Woo-Gun;Kim, Tae-Han
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.582-587
    • /
    • 2001
  • A numerical method using FLUENT code was employed to investigate fluid drag and lift forces on a cylinder in a group of circular cylinders, subjected to a uniform cross flow. The cylinders can be arranged in tandem or in a staggered arrangements relative to the free stream flow. A vortex street behind the cylinder pairs or jets between the cylinders forms according to the arrangements. Vibration on a cylinder can occurs due to vortex shedding, fluid-elastic stiffness and wake galloping. The flow is first investigated and then the forces acting on the cylinder are calculated. The lift and drag forces on an elastically mounted cylinder in the wake of an upstream fixed cylinder arise from the mean flow plus velocity and pressure gradients in the wake. The analytical results of two staggered cylinder were compared with the existing experimental ones for validation of the present method. The analytical results of the forces were in good agreement with the experimental ones. The present method can be used for the analysis of the fluid induced vibration where the group of circular cylinders are subjected to a cross flow.

  • PDF

Quantitative Measurements of Complex Flow Field Around a Hydrofoil Using Particle Image Velocimetry (PIV를 이용한 수중익 주위 복잡유동장의 정량적 계측)

  • B.S. Hyun;K.S. Choi;D.H. Doh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • An experimental study has been carried out at circulating water channel to investigate the viscous flow around breaking waves generated by a submerged hydrofoil(NACA0012). Detailed flow measurements were made at several critical points including an incipient wave-breaking point and a fully-developed wave breaker. Particle Image Velocimetry(PIV) was employed to visualize the flow field very close to the breaker as well as at the near- and far-wake of the breaker. Generation, development and decay of the wave breaker have been investigated. It is found that PIV technique could be well applied to the complex flow field, including the vortical structures near the free surface as well as the wake of the hydrofoil.

  • PDF

Calculation of the mean flow past circular cylinders using an improved separation model (개선된 박리 모델을 이용한 원통 주위 유동장 계산)

  • 최도형;신승용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.877-883
    • /
    • 1987
  • A new improved inviscid separation model to calculate the mean flow past circular cylinders is proposed. The wake region is modeled by a pair of vortex sheets which emerge from the separation points and are allowed to move freely with the local stream. The vortex strength assumes a constant value for some initial distance which is related to the pressure drag and gradually decreases to zero as the sheet moves farther away from the body. This vorticity distribution automatically takes care of the length parameter which has been one of the deficiencies in the existing models. The procedure is tested against various experimental data and the agreement is quite good for both sub and super-critical regimes. The comparison with an existing model is also given.

Computation of Broadband Noise of a 2-B Flat-airfoil Cascade Subject to Ingested Turbulence (난류 와류의 입사에 의한 이차원 평판 에어포일 캐스케이드의 광대역 소음장의 계산)

  • Cheong, Cheolung;Joseph Phillip;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.687-696
    • /
    • 2005
  • Acoustic power spectrum of the upstream and downstream sound field due to an isotropic frozen turbulent gust impinging on a cascade of flat plate airfoils are computed by using a analytic formulation derived from Smith's method, and Whitehead's LINSUB codes. A parametric study of the effects on sound power of the number of blades and turbulence length scale is performed with an emphasis on analyzing the characteristics of sound power spectrum. Through the comparison of the computed results of sound power, it is found that acoustic power spectrum from the 2-D cascade subject to a ingested turbulence can be categorized into two distinct regions. one is lower frequency region where some spectral components of turbulence do not contribute to the cut-on acoustic modes and therefore the effect of the cascade geometry is more dominant ; the other is higher frequency region where all of spectral components of turbulence make contributions to cut-on acoustic modes and thus acoustic power is approximately proportional to the blade number.

Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step (와류 안정화를 위한 후향계단 유동 능동제어기법)

  • Lee, Jin-Ik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.246-253
    • /
    • 2013
  • This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.

An Experimental Study of Turbulent Uniform Shear Flow in a Nearly Two-Dimensional $90^{\circ}$ Curved Duct (I) - Mean Flow Field- (2차원 $90^{\circ}$ 곡관에서 균일전단류의 특성에 대한 실험적 연구 (1) -평균유동장-)

  • 임효재;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.834-845
    • /
    • 1995
  • An experimental study is made in a nearly two-dimensional 90.deg. curved duct to investigate the effects of interaction between streamline curvature and mean strain on turbulence. The initial shear at the entrance to the curved duct is varied by an upstream shear generator to produce five different shear conditions ; a uniform flow (UF), a positive weak shear (PW), a positive strong shear(PS), a negative weak shear (NW) and a negative strong shear(NS). With the mean field data of the case UF, variations of the momentum thickness, the shape factor and the skin friction over the convex(inner) surface and the concave (outer) surface are scrutinized quantitatively in-depth. It is found that, while the pressure loss due to curvature is insensitive to the inlet shear rates, the distributions of wall static pressure along both convex and concave surfaces are much influenced by the inlet shear rates.

Visualization of Roll Torque Generating Flows in a SRM Submerged-Nozzle by Cold Air-flow Test (내삽노즐 고체로켓모터의 공기 유동모사시험을 통한 롤토크 발생유동 가시화)

  • Kim, Do-Hun;Lee, In-Chul;Lee, Yeol;Koo, Ja-Ye;Kang, Moon-Jung;Kim, Yoon-Gon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.29-35
    • /
    • 2011
  • The behaviors of combustion-induced internal flows of SRM equipped with fin-slot grain and submerged nozzle are very complex and diverse. Cold air-flow tests for 2D and 3D scale models of SRM have been done in order to specify the visualization method to analyze particular internal flow patterns such as roll-torque inducing flow. Swirl flow induced by asymmetric vortical tubes also has been visualized through employing various light source and recording directions.