• Title/Summary/Keyword: 온톨로지 추론엔진

Search Result 87, Processing Time 0.025 seconds

A Method for Supporting Description Logic SHIQ(D) Reasoning over Large ABoxes (대용량 ABox에서 서술논리 SHIQ(D) 추론 지원 방법)

  • Seo, Eun-Seok;Choi, Yong-Joon;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.530-538
    • /
    • 2007
  • Most existing deductive engines study for optimization of TBox based on Tableaux algorithm. However, in order to deduce mass-storing ABox in reality, it can't be decided in finite time. Therefore, for the efficiency of the deductive engine, there needs to be reasoning technique optimized for ABox. This paper uses the method that changes OWL-DL based Ontology to the form of Rule like Datalog in order to interlock store device such as RDBMS. Ultimately, it tries to in circumstance of real world. Therefor, using Axiom that OWL holds, it suggests reasoning method that applies rules including datatype.

A Study on the Performance Evaluation of Semantic Retrieval Engines (시맨틱검색엔진의 성능평가에 관한 연구)

  • Noh, Young-Hee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.22 no.2
    • /
    • pp.141-160
    • /
    • 2011
  • This study suggested knowledge base and search engine for the libraries that have the largescaled data. For this purpose, 3 components of knowledge bases(triple ontology, concept-based knowledge base, inverted file) were constructed and 3 search engines(search engine JENA for rule-based reasoning, Concept-based search engine, keyword-based Lucene retrieval engine) were implemented to measure their performance. As a result, concept-based retrieval engine showed the best performance, followed by ontology-based Jena retrieval engine, and then by a normal keyword search engine.

Intelligent Image Retrieval Using Inference-Based Web Ontology (추론기반의 웹 온톨로지를 이용한 지능형 이미지 검색)

  • Kim, Su-Kyoung;Ahan, Kee-Hong
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.521-524
    • /
    • 2007
  • 추론 기반의 온톨로지 구축은 시맨틱 웹 응용의 구현을 위한 최소 요건이다. 그러나 현재 시맨틱 웹응용에 적용된 대부분의 온톨로지들은 추론을 통한 지식의 재사용을 제공하지 못하며, 이는 시맨틱 웹응용의 발전에 많은 지장을 주는 요인이다. 따라서 본 연구는 서술 논리와 규칙 언어로 표현된 추론 기반의 웹 온톨로지를 구축하고, 이를 지능형 이미지 검색에 적용하였다. 추론 엔진을 이용한 지능형 이미지 검색 결과 실험으로, 추론 기반의 웹 온톨로지와 주석 기반의 웹 온톨로지를 이미지 검색 시스템에 적용하였으며, 추론 기반의 웹 온톨로지를 적용한 검색 결과가 재현율과 정확율에 있어 더욱 우수한 성능을 보여주었다.

An Art Image Retrieval System Using Ontology Reasoning Engine (온톨로지 추론 엔진을 이용한 미술 작품 검색 시스템)

  • 한상진;조우상;이복주
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.139-141
    • /
    • 2004
  • 본 논문에서는 웹 상의 미술 작품 검색하기 위해 기존의 키워드 매칭 검색 대신에 시맨틱 기반의 확장된 검색 방법을 소개한다. 온톨로지를 만들기 위해서는 많은 온톨로지 관련 언어가 있다. 그 중 최근의 연구 방향은 RDFS/RDF와 OWL로 작성된 온톨로지와 온톨로지의 추론 분야이다. 지금까지의 정보 검색이 단순한 구문중심의 검색이었다면 앞으로의 정보 검색은 의미 중심의 지식 기반의 정보 검색을 발전할 것이다. 이에 본 논문이 온톨로지를 활용한 지식 기반 검색 시스템을 제안한다.

  • PDF

Index for Efficient Ontology Retrieval and Inference (효율적인 온톨로지 검색과 추론을 위한 인덱스)

  • Song, Seungjae;Kim, Insung;Chun, Jonghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.2
    • /
    • pp.153-173
    • /
    • 2013
  • The ontology has been gaining increasing interests by recent arise of the semantic web and related technologies. The focus is mostly on inference query processing that requires high-level techniques for storage and searching ontologies efficiently, and it has been actively studied in the area of semantic-based searching. W3C's recommendation is to use RDFS and OWL for representing ontologies. However memory-based editors, inference engines, and triple storages all store ontology as a simple set of triplets. Naturally the performance is limited, especially when a large-scale ontology needs to be processed. A variety of researches on proposing algorithms for efficient inference query processing has been conducted, and many of them are based on using proven relational database technology. However, none of them had been successful in obtaining the complete set of inference results which reflects the five characteristics of the ontology properties. In this paper, we propose a new index structure called hyper cube index to efficiently process inference queries. Our approach is based on an intuition that an index can speed up the query processing when extensive inferencing is required.

Confidence Value based Large Scale OWL Horst Ontology Reasoning (신뢰 값 기반의 대용량 OWL Horst 온톨로지 추론)

  • Lee, Wan-Gon;Park, Hyun-Kyu;Jagvaral, Batselem;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.553-561
    • /
    • 2016
  • Several machine learning techniques are able to automatically populate ontology data from web sources. Also the interest for large scale ontology reasoning is increasing. However, there is a problem leading to the speculative result to imply uncertainties. Hence, there is a need to consider the reliability problems of various data obtained from the web. Currently, large scale ontology reasoning methods based on the trust value is required because the inference-based reliability of quantitative ontology is insufficient. In this study, we proposed a large scale OWL Horst reasoning method based on a confidence value using spark, a distributed in-memory framework. It describes a method for integrating the confidence value of duplicated data. In addition, it explains a distributed parallel heuristic algorithm to solve the problem of degrading the performance of the inference. In order to evaluate the performance of reasoning methods based on the confidence value, the experiment was conducted using LUBM3000. The experiment results showed that our approach could perform reasoning twice faster than existing reasoning systems like WebPIE.

A Scalable OWL Horst Lite Ontology Reasoning Approach based on Distributed Cluster Memories (분산 클러스터 메모리 기반 대용량 OWL Horst Lite 온톨로지 추론 기법)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.307-319
    • /
    • 2015
  • Current ontology studies use the Hadoop distributed storage framework to perform map-reduce algorithm-based reasoning for scalable ontologies. In this paper, however, we propose a novel approach for scalable Web Ontology Language (OWL) Horst Lite ontology reasoning, based on distributed cluster memories. Rule-based reasoning, which is frequently used for scalable ontologies, iteratively executes triple-format ontology rules, until the inferred data no longer exists. Therefore, when the scalable ontology reasoning is performed on computer hard drives, the ontology reasoner suffers from performance limitations. In order to overcome this drawback, we propose an approach that loads the ontologies into distributed cluster memories, using Spark (a memory-based distributed computing framework), which executes the ontology reasoning. In order to implement an appropriate OWL Horst Lite ontology reasoning system on Spark, our method divides the scalable ontologies into blocks, loads each block into the cluster nodes, and subsequently handles the data in the distributed memories. We used the Lehigh University Benchmark, which is used to evaluate ontology inference and search speed, to experimentally evaluate the methods suggested in this paper, which we applied to LUBM8000 (1.1 billion triples, 155 gigabytes). When compared with WebPIE, a representative mapreduce algorithm-based scalable ontology reasoner, the proposed approach showed a throughput improvement of 320% (62k/s) over WebPIE (19k/s).

EOL : Epistemological Ontology Language and Reasoner with SUNHI for Ubiquitous Computing Environment (EOL : SUNHI 표현범위를 가진 인식론적 온톨로지 표현 언어 와 추론엔진)

  • Ma, Jong-Soo;Kim, Min-Soo;Kim, Min-Koo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.835-840
    • /
    • 2007
  • 현재 이슈가 되고 있는 유비쿼터스 컴퓨팅 환경에서 서비스를 제공함에 있어 사용자의 만족도를 높여주기 위해 서비스의 지능화가 필요하다. 이러한 지능적인 서비스를 제공하기 위해 서비스에 필요한 지식을 논리적으로 표현하고, 체계적으로 추론할 수 있는 방법이 요구된다. 이를 위해 표현 범위가 넓고 유연한 일차 술어 논리(FOL)는 여러 분야에서 사용되었으며, 추론 시스템에 이용되고 있다. 그러나 풍부한 표현 범위는 유비쿼터스 컴퓨팅 환경에서의 오브젝트 관리에 있어 많은 계산비용이 소요된다. 서비스의 빠른 제공을 목표로 하고 있는 유비쿼터스 환경에서 이러한 계산비용은 서비스 제공 시간을 늦추는 요인이 된다. 이러한 문제를 극복하고 지식의 의미를 부여하는 방법으로 Description Logic과 온톨로지가 연구되고 있다. 특히 OWL(Web Ontology Language)은 풍부한 표현력을 제공하고 있으며, W3C에 의해 온톨로지 기술의 표준으로 제안되었다. 그러나 풍부한 표현 범위는 실제 컴퓨팅 환경에서 모두 사용되지 않고, 기술 및 추론의 복잡함으로 overhead가 발생한다. 본 논문에서는 이를 극복하고자 실제 유비쿼터스 환경에서 요구되는 표현 범위를 만족하는 SUNHI의 표현력을 갖는 EOL을 제안한다.

  • PDF

A Method for Supporting Description Logic SHIQ(D) Reasoning over Large ABox (OWL-DL 기반의 대용량 ABox 추론 기법)

  • Seo, Eun-Seok;Choi, Yong-Joon;Park, Young-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.352-356
    • /
    • 2006
  • 현존하는 추론 엔진들은 대부분 Tableaux 알고리즘 기반의 TBox의 최적화를 위한 연구를 진행하였다. 하지만 현실에서 대용량의 ABox를 추론하기 위한 유한한 시간 내에 결정 가능성을 보장하지 못한다. 따라서 실용성 있는 추론 엔진 효율을 위해서는 대용량 데이터를 가지는 ABox를 위한 최적화된 추론 기법이 필요하다. 본 논문에서는 OWL-DL 기반의 온톨로지(Ontology)를 데이터로그(Datalog)와 같은 규칙(Rule) 형태로 변형하여 관계형 데이터베이스와 같은 저장 시스템과 연동하기 위한 방법을 이용한다. 최종적으로 실세계의 환경에서의 데이터타입 속성(Datatype Property)이 포함된 SHIQ(D) 구성의 실용적인 추론 시스템을 수행하고자 한다. 따라서 OWL이 가지는 공리(Axiom)를 이용하여 데이터타입 속성이 포함된 규칙을 적용한 추론 방법에 대해서 제안하였다.

  • PDF

Ontology Inferenceing and Updating using FOL (FOL을 이용한 온톨로지 추론과 수정)

  • Kang, Min-Goo;Park, Young-Tack
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.301-304
    • /
    • 2003
  • 현재 웹이 가지고 있는 문제점들을 해결하기 위해서 연구하고 있는 차세대 웹을 시멘틱 웹이라고 한다. 시멘틱 웹에서 다루고 있는 기술들은 다양하지만 시멘틱 웹 구현에 있어서 온톨로지와 그 온톤로지를 추론하여 agent가 정보의 Semantic을 알아내는 것이 가장 핵심되는 영역의 기술이다. 본 논문에서는 DAML+OIL로 작성된 온톨로지의 추론 방법과 추론 결과물을 이용한 온톨로지 수정방법에 대해서 제안한다. 이를 위해서 온톨로지를 inference engine에서 작업을 수행할 수 있도록 FOL로 변환하는 기술, DAML+OIL axiom과 FOL을 이용해서 inference 할 수 있는 엔진 구축 기술, inference 결과물을 DAML+OIL로 변환하여 수정하는 방법들을 제안한다.

  • PDF