Most existing deductive engines study for optimization of TBox based on Tableaux algorithm. However, in order to deduce mass-storing ABox in reality, it can't be decided in finite time. Therefore, for the efficiency of the deductive engine, there needs to be reasoning technique optimized for ABox. This paper uses the method that changes OWL-DL based Ontology to the form of Rule like Datalog in order to interlock store device such as RDBMS. Ultimately, it tries to in circumstance of real world. Therefor, using Axiom that OWL holds, it suggests reasoning method that applies rules including datatype.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.22
no.2
/
pp.141-160
/
2011
This study suggested knowledge base and search engine for the libraries that have the largescaled data. For this purpose, 3 components of knowledge bases(triple ontology, concept-based knowledge base, inverted file) were constructed and 3 search engines(search engine JENA for rule-based reasoning, Concept-based search engine, keyword-based Lucene retrieval engine) were implemented to measure their performance. As a result, concept-based retrieval engine showed the best performance, followed by ontology-based Jena retrieval engine, and then by a normal keyword search engine.
추론 기반의 온톨로지 구축은 시맨틱 웹 응용의 구현을 위한 최소 요건이다. 그러나 현재 시맨틱 웹응용에 적용된 대부분의 온톨로지들은 추론을 통한 지식의 재사용을 제공하지 못하며, 이는 시맨틱 웹응용의 발전에 많은 지장을 주는 요인이다. 따라서 본 연구는 서술 논리와 규칙 언어로 표현된 추론 기반의 웹 온톨로지를 구축하고, 이를 지능형 이미지 검색에 적용하였다. 추론 엔진을 이용한 지능형 이미지 검색 결과 실험으로, 추론 기반의 웹 온톨로지와 주석 기반의 웹 온톨로지를 이미지 검색 시스템에 적용하였으며, 추론 기반의 웹 온톨로지를 적용한 검색 결과가 재현율과 정확율에 있어 더욱 우수한 성능을 보여주었다.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.139-141
/
2004
본 논문에서는 웹 상의 미술 작품 검색하기 위해 기존의 키워드 매칭 검색 대신에 시맨틱 기반의 확장된 검색 방법을 소개한다. 온톨로지를 만들기 위해서는 많은 온톨로지 관련 언어가 있다. 그 중 최근의 연구 방향은 RDFS/RDF와 OWL로 작성된 온톨로지와 온톨로지의 추론 분야이다. 지금까지의 정보 검색이 단순한 구문중심의 검색이었다면 앞으로의 정보 검색은 의미 중심의 지식 기반의 정보 검색을 발전할 것이다. 이에 본 논문이 온톨로지를 활용한 지식 기반 검색 시스템을 제안한다.
The ontology has been gaining increasing interests by recent arise of the semantic web and related technologies. The focus is mostly on inference query processing that requires high-level techniques for storage and searching ontologies efficiently, and it has been actively studied in the area of semantic-based searching. W3C's recommendation is to use RDFS and OWL for representing ontologies. However memory-based editors, inference engines, and triple storages all store ontology as a simple set of triplets. Naturally the performance is limited, especially when a large-scale ontology needs to be processed. A variety of researches on proposing algorithms for efficient inference query processing has been conducted, and many of them are based on using proven relational database technology. However, none of them had been successful in obtaining the complete set of inference results which reflects the five characteristics of the ontology properties. In this paper, we propose a new index structure called hyper cube index to efficiently process inference queries. Our approach is based on an intuition that an index can speed up the query processing when extensive inferencing is required.
Several machine learning techniques are able to automatically populate ontology data from web sources. Also the interest for large scale ontology reasoning is increasing. However, there is a problem leading to the speculative result to imply uncertainties. Hence, there is a need to consider the reliability problems of various data obtained from the web. Currently, large scale ontology reasoning methods based on the trust value is required because the inference-based reliability of quantitative ontology is insufficient. In this study, we proposed a large scale OWL Horst reasoning method based on a confidence value using spark, a distributed in-memory framework. It describes a method for integrating the confidence value of duplicated data. In addition, it explains a distributed parallel heuristic algorithm to solve the problem of degrading the performance of the inference. In order to evaluate the performance of reasoning methods based on the confidence value, the experiment was conducted using LUBM3000. The experiment results showed that our approach could perform reasoning twice faster than existing reasoning systems like WebPIE.
Current ontology studies use the Hadoop distributed storage framework to perform map-reduce algorithm-based reasoning for scalable ontologies. In this paper, however, we propose a novel approach for scalable Web Ontology Language (OWL) Horst Lite ontology reasoning, based on distributed cluster memories. Rule-based reasoning, which is frequently used for scalable ontologies, iteratively executes triple-format ontology rules, until the inferred data no longer exists. Therefore, when the scalable ontology reasoning is performed on computer hard drives, the ontology reasoner suffers from performance limitations. In order to overcome this drawback, we propose an approach that loads the ontologies into distributed cluster memories, using Spark (a memory-based distributed computing framework), which executes the ontology reasoning. In order to implement an appropriate OWL Horst Lite ontology reasoning system on Spark, our method divides the scalable ontologies into blocks, loads each block into the cluster nodes, and subsequently handles the data in the distributed memories. We used the Lehigh University Benchmark, which is used to evaluate ontology inference and search speed, to experimentally evaluate the methods suggested in this paper, which we applied to LUBM8000 (1.1 billion triples, 155 gigabytes). When compared with WebPIE, a representative mapreduce algorithm-based scalable ontology reasoner, the proposed approach showed a throughput improvement of 320% (62k/s) over WebPIE (19k/s).
현재 이슈가 되고 있는 유비쿼터스 컴퓨팅 환경에서 서비스를 제공함에 있어 사용자의 만족도를 높여주기 위해 서비스의 지능화가 필요하다. 이러한 지능적인 서비스를 제공하기 위해 서비스에 필요한 지식을 논리적으로 표현하고, 체계적으로 추론할 수 있는 방법이 요구된다. 이를 위해 표현 범위가 넓고 유연한 일차 술어 논리(FOL)는 여러 분야에서 사용되었으며, 추론 시스템에 이용되고 있다. 그러나 풍부한 표현 범위는 유비쿼터스 컴퓨팅 환경에서의 오브젝트 관리에 있어 많은 계산비용이 소요된다. 서비스의 빠른 제공을 목표로 하고 있는 유비쿼터스 환경에서 이러한 계산비용은 서비스 제공 시간을 늦추는 요인이 된다. 이러한 문제를 극복하고 지식의 의미를 부여하는 방법으로 Description Logic과 온톨로지가 연구되고 있다. 특히 OWL(Web Ontology Language)은 풍부한 표현력을 제공하고 있으며, W3C에 의해 온톨로지 기술의 표준으로 제안되었다. 그러나 풍부한 표현 범위는 실제 컴퓨팅 환경에서 모두 사용되지 않고, 기술 및 추론의 복잡함으로 overhead가 발생한다. 본 논문에서는 이를 극복하고자 실제 유비쿼터스 환경에서 요구되는 표현 범위를 만족하는 SUNHI의 표현력을 갖는 EOL을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.352-356
/
2006
현존하는 추론 엔진들은 대부분 Tableaux 알고리즘 기반의 TBox의 최적화를 위한 연구를 진행하였다. 하지만 현실에서 대용량의 ABox를 추론하기 위한 유한한 시간 내에 결정 가능성을 보장하지 못한다. 따라서 실용성 있는 추론 엔진 효율을 위해서는 대용량 데이터를 가지는 ABox를 위한 최적화된 추론 기법이 필요하다. 본 논문에서는 OWL-DL 기반의 온톨로지(Ontology)를 데이터로그(Datalog)와 같은 규칙(Rule) 형태로 변형하여 관계형 데이터베이스와 같은 저장 시스템과 연동하기 위한 방법을 이용한다. 최종적으로 실세계의 환경에서의 데이터타입 속성(Datatype Property)이 포함된 SHIQ(D) 구성의 실용적인 추론 시스템을 수행하고자 한다. 따라서 OWL이 가지는 공리(Axiom)를 이용하여 데이터타입 속성이 포함된 규칙을 적용한 추론 방법에 대해서 제안하였다.
현재 웹이 가지고 있는 문제점들을 해결하기 위해서 연구하고 있는 차세대 웹을 시멘틱 웹이라고 한다. 시멘틱 웹에서 다루고 있는 기술들은 다양하지만 시멘틱 웹 구현에 있어서 온톨로지와 그 온톤로지를 추론하여 agent가 정보의 Semantic을 알아내는 것이 가장 핵심되는 영역의 기술이다. 본 논문에서는 DAML+OIL로 작성된 온톨로지의 추론 방법과 추론 결과물을 이용한 온톨로지 수정방법에 대해서 제안한다. 이를 위해서 온톨로지를 inference engine에서 작업을 수행할 수 있도록 FOL로 변환하는 기술, DAML+OIL axiom과 FOL을 이용해서 inference 할 수 있는 엔진 구축 기술, inference 결과물을 DAML+OIL로 변환하여 수정하는 방법들을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.