• Title/Summary/Keyword: 온톨로지 네트워크

Search Result 119, Processing Time 0.021 seconds

A study on Dynamic Routing Protocol using Entropy-Doppler Topology (엔트로피-도플러 기법을 이용한 동적 라우팅 프로토콜에 관한 연구)

  • Chi, Sam-Hyun;Kim, Sun-Guk;Doo, Kyung-Min;Lee, Kang-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.461-465
    • /
    • 2007
  • MANET(Mobile Ad hoc Networks) is free-mobility formation of mobile nodes in the wireless networks. Generally, wireless networks has two main type of structures which Tree and Mesh. These general structure is difficult to do which connectivity, redundancy transmit and network continuant. In this paper, we would suggest a new ODDMRP(Ontology Doppler effect-based Dynamic Multicast Routing Protocol) technology for effective MANET which Ontology Doppler effect-based. ODDMRP consist of the parameters for node entropy when using Doppler effect which moving position of round node, moving time, and distribution chart in velocity also it express distance of destination node and property structure organization. It would be used to provide improvement to keep the optimal communication routing and also could be improve network stabilization, and continuation durability of connectivity.

  • PDF

A construction Plan for the integrated information network of sports industry (스포츠산업 통합정보망 구축 방안)

  • Jun, Sunhye;Kang, SeungAe;Kim, Hyuncheol;Kwon, Hyungil;Kang, Sunyoung;Kim, Yeojin;Jeon, Heejun
    • Convergence Security Journal
    • /
    • v.13 no.3
    • /
    • pp.63-69
    • /
    • 2013
  • This research analyze the current status pertaining to the sport industry's information system and information network in Korea to propose integrated information network of sport industry construction measures with the goal of optimizing vertical and horizontal network formation, and knowledge information sharing and dissemination. To construct integrated information network of sport industry, literature examination and meeting of experts to search for measures are utilized. This paper analyze the realities of the sport industry's information system and information network in Korea to propose the following when it comes to the measures to realize sport industry's information integration. First, DB for sport industry relate information that factored in the Ontology is being developed. In other words, it is necessary to design a DB that factors in the Semantic Web. Second, once the DB relate to the sport industry that factored in the Ontology is developed, it is necessary to build RSS/Atom based active network that enables exchange of organic information among them.

A Constrained Learning Method based on Ontology of Bayesian Networks for Effective Recognition of Uncertain Scenes (불확실한 장면의 효과적인 인식을 위한 베이지안 네트워크의 온톨로지 기반 제한 학습방법)

  • Hwang, Keum-Sung;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.549-561
    • /
    • 2007
  • Vision-based scene understanding is to infer and interpret the context of a scene based on the evidences by analyzing the images. A probabilistic approach using Bayesian networks is actively researched, which is favorable for modeling and inferencing cause-and-effects. However, it is difficult to gather meaningful evidences sufficiently and design the model by human because the real situations are dynamic and uncertain. In this paper, we propose a learning method of Bayesian network that reduces the computational complexity and enhances the accuracy by searching an efficient BN structure in spite of insufficient evidences and training data. This method represents the domain knowledge as ontology and builds an efficient hierarchical BN structure under constraint rules that come from the ontology. To evaluate the proposed method, we have collected 90 images in nine types of circumstances. The result of experiments indicates that the proposed method shows good performance in the uncertain environment in spite of few evidences and it takes less time to learn.

Dynamic Virtual Ontology using Tags with Semantic Relationship on Social-web to Support Effective Search (효율적 자원 탐색을 위한 소셜 웹 태그들을 이용한 동적 가상 온톨로지 생성 연구)

  • Lee, Hyun Jung;Sohn, Mye
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.19-33
    • /
    • 2013
  • In this research, a proposed Dynamic Virtual Ontology using Tags (DyVOT) supports dynamic search of resources depending on user's requirements using tags from social web driven resources. It is general that the tags are defined by annotations of a series of described words by social users who usually tags social information resources such as web-page, images, u-tube, videos, etc. Therefore, tags are characterized and mirrored by information resources. Therefore, it is possible for tags as meta-data to match into some resources. Consequently, we can extract semantic relationships between tags owing to the dependency of relationships between tags as representatives of resources. However, to do this, there is limitation because there are allophonic synonym and homonym among tags that are usually marked by a series of words. Thus, research related to folksonomies using tags have been applied to classification of words by semantic-based allophonic synonym. In addition, some research are focusing on clustering and/or classification of resources by semantic-based relationships among tags. In spite of, there also is limitation of these research because these are focusing on semantic-based hyper/hypo relationships or clustering among tags without consideration of conceptual associative relationships between classified or clustered groups. It makes difficulty to effective searching resources depending on user requirements. In this research, the proposed DyVOT uses tags and constructs ontologyfor effective search. We assumed that tags are extracted from user requirements, which are used to construct multi sub-ontology as combinations of tags that are composed of a part of the tags or all. In addition, the proposed DyVOT constructs ontology which is based on hierarchical and associative relationships among tags for effective search of a solution. The ontology is composed of static- and dynamic-ontology. The static-ontology defines semantic-based hierarchical hyper/hypo relationships among tags as in (http://semanticcloud.sandra-siegel.de/) with a tree structure. From the static-ontology, the DyVOT extracts multi sub-ontology using multi sub-tag which are constructed by parts of tags. Finally, sub-ontology are constructed by hierarchy paths which contain the sub-tag. To create dynamic-ontology by the proposed DyVOT, it is necessary to define associative relationships among multi sub-ontology that are extracted from hierarchical relationships of static-ontology. The associative relationship is defined by shared resources between tags which are linked by multi sub-ontology. The association is measured by the degree of shared resources that are allocated into the tags of sub-ontology. If the value of association is larger than threshold value, then associative relationship among tags is newly created. The associative relationships are used to merge and construct new hierarchy the multi sub-ontology. To construct dynamic-ontology, it is essential to defined new class which is linked by two more sub-ontology, which is generated by merged tags which are highly associative by proving using shared resources. Thereby, the class is applied to generate new hierarchy with extracted multi sub-ontology to create a dynamic-ontology. The new class is settle down on the ontology. So, the newly created class needs to be belong to the dynamic-ontology. So, the class used to new hyper/hypo hierarchy relationship between the class and tags which are linked to multi sub-ontology. At last, DyVOT is developed by newly defined associative relationships which are extracted from hierarchical relationships among tags. Resources are matched into the DyVOT which narrows down search boundary and shrinks the search paths. Finally, we can create the DyVOT using the newly defined associative relationships. While static data catalog (Dean and Ghemawat, 2004; 2008) statically searches resources depending on user requirements, the proposed DyVOT dynamically searches resources using multi sub-ontology by parallel processing. In this light, the DyVOT supports improvement of correctness and agility of search and decreasing of search effort by reduction of search path.

A study for 'Education 2.0' service case and Network Architecture Analysis using convergence technology (융합 기술을 활용한 '교육 2.0' 서비스 사례조사와 네트워크 아키텍처 분석에 관한 연구)

  • Kang, Jang-Mook;Kang, Sung-Wook;Moon, Song-Chul
    • Journal of Digital Contents Society
    • /
    • v.9 no.4
    • /
    • pp.759-769
    • /
    • 2008
  • Convergence technology stimulating participation sharing openness to the public of web 2.0 such as Open-API, Mash-Up, Syndication gives diversity to education field. The convergence in education field means the revolution toward education 2.0 and new education reflecting web 2.0 stream is called 'education 2.0'. Education environment can be the space of social network intimately linked between learners, educators and educational organization. Network technology developed in ontology language makes it possible to educate semantically which understands privatized education service and connection. Especially, filtering system by the reputation system of Amazon and the collective intelligence of Wikipedia are the best samples. Education area can adopt actively because learners as educational main body can broaden their role of participation and communicate bilaterally in the equal position. In this paper, new network architecture in contents linkage is introduced and researched for utilization and analysis of the architecture for web 2.0 technology and educational contents are to be converged. Education 2.0 service utilizing convergence technology and network architecture for realizing education 2.0 is introduced and analyzed so that the research could be a preceding research to the education 2.0 platform foundation.

  • PDF

A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services (온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구)

  • Jeong, Hanjo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.79-92
    • /
    • 2015
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology and a topic modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patents, and reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a Relational Data-to-Triples transformer is implemented. Also, a topic modeling approach is introduced to extract the document-topic relationships. A triple store is used to manage and process the ontology data while preserving the network characteristics of knowledge map service. Knowledge map can be divided into two types: one is a knowledge map used in the area of knowledge management to store, manage and process the organizations' data as knowledge, the other is a knowledge map for analyzing and representing knowledge extracted from the science & technology documents. This research focuses on the latter one. In this research, a knowledge map service is introduced for integrating the national R&D data obtained from National Digital Science Library (NDSL) and National Science & Technology Information Service (NTIS), which are two major repository and service of national R&D data servicing in Korea. A lightweight ontology is used to design and build a knowledge map. Using the lightweight ontology enables us to represent and process knowledge as a simple network and it fits in with the knowledge navigation and visualization characteristics of the knowledge map. The lightweight ontology is used to represent the entities and their relationships in the knowledge maps, and an ontology repository is created to store and process the ontology. In the ontologies, researchers are implicitly connected by the national R&D data as the author relationships and the performer relationships. A knowledge map for displaying researchers' network is created, and the researchers' network is created by the co-authoring relationships of the national R&D documents and the co-participation relationships of the national R&D projects. To sum up, a knowledge map-service system based on topic modeling and ontology is introduced for processing knowledge about the national R&D data such as research projects, papers, patent, project reports, and Global Trends Briefing (GTB) data. The system has goals 1) to integrate the national R&D data obtained from NDSL and NTIS, 2) to provide a semantic & topic based information search on the integrated data, and 3) to provide a knowledge map services based on the semantic analysis and knowledge processing. The S&T information such as research papers, research reports, patents and GTB are daily updated from NDSL, and the R&D projects information including their participants and output information are updated from the NTIS. The S&T information and the national R&D information are obtained and integrated to the integrated database. Knowledge base is constructed by transforming the relational data into triples referencing R&D ontology. In addition, a topic modeling method is employed to extract the relationships between the S&T documents and topic keyword/s representing the documents. The topic modeling approach enables us to extract the relationships and topic keyword/s based on the semantics, not based on the simple keyword/s. Lastly, we show an experiment on the construction of the integrated knowledge base using the lightweight ontology and topic modeling, and the knowledge map services created based on the knowledge base are also introduced.

Large Scale Incremental Reasoning using SWRL Rules in a Distributed Framework (분산 처리 환경에서 SWRL 규칙을 이용한 대용량 점증적 추론 방법)

  • Lee, Wan-Gon;Bang, Sung-Hyuk;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.383-391
    • /
    • 2017
  • As we enter a new era of Big Data, the amount of semantic data has rapidly increased. In order to derive meaningful information from this large semantic data, studies that utilize the SWRL(Semantic Web Rule Language) are being actively conducted. SWRL rules are based on data extracted from a user's empirical knowledge. However, conventional reasoning systems developed on single machines cannot process large scale data. Similarly, multi-node based reasoning systems have performance degradation problems due to network shuffling. Therefore, this paper overcomes the limitations of existing systems and proposes more efficient distributed inference methods. It also introduces data partitioning strategies to minimize network shuffling. In addition, it describes a method for optimizing the incremental reasoning process through data selection and determining the rule order. In order to evaluate the proposed methods, the experiments were conducted using WiseKB consisting of 200 million triples with 83 user defined rules and the overall reasoning task was completed in 32.7 minutes. Also, the experiment results using LUBM bench datasets showed that our approach could perform reasoning twice as fast as MapReduce based reasoning systems.

Genome-Wide Association Study between Copy Number Variation and Trans-Gene Expression by Protein-Protein Interaction-Network (단백질 상호작용 네트워크를 통한 유전체 단위반복변이와 트랜스유전자 발현과의 연관성 분석)

  • Park, Chi-Hyun;Ahn, Jae-Gyoon;Yoon, Young-Mi;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.18D no.2
    • /
    • pp.89-100
    • /
    • 2011
  • The CNV (Copy Number Variation) which is one of the genetic structural variations in human genome is closely related with the function of gene. In particular, the genome-wide association studies for genetic diseased persons have been researched. However, there have been few studies which infer the genetic function of CNV with normal human. In this paper, we propose the analysis method to reveal the functional relationship between common CNV and genes without considering their genomic loci. To achieve that, we propose the data integration method for heterogeneity biological data and novel measurement which can calculate the correlation between common CNV and genes. To verify the significance of proposed method, we has experimented several verification tests with GO database. The result showed that the novel measurement had enough significance compared with random test and the proposed method could systematically produce the candidates of genetic function which have strong correlation with common CNV.

A Study on Internet of Things based on Semantic for Library (도서관의 시맨틱 기반 사물인터넷(IoT) 적용에 관한 연구)

  • Jung, Min-Kyung;Kwon, Sun-Young
    • Journal of Korean Library and Information Science Society
    • /
    • v.45 no.2
    • /
    • pp.235-260
    • /
    • 2014
  • This study aims to apply the concept of Internet of things to library and interpret a library as ecological space where human, thing and data are communicating and organically networking through internet. First, we defined various things existing in physical spaces of the real world and internet spaces as elements of Internet of Things. Then we proposed to apply a semantic web platform to integrate different meta-data formats and communication protocols from things. Finally, we provide the model of Internet of Things based on Semantic web to utilize a variety of information from things for library management and user service.

Procedural Entity Extraction for Procedural Knowledge on Medline Abstracts (의료 문헌에서의 절차적 지식 추출을 위한 단위 절차 추출 연구)

  • Song, Sa-Kwang;Oh, Heung-Seon;Choi, Yoon-Jung;Jang, He-Ju;Myaeng, Sung-Hyon;Choi, Sung-Pil;Choi, Yun-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.154-157
    • /
    • 2011
  • 본 연구는 2인의 전문의와 함께 의료 문헌의 초록을 분석하여 의료문서에서의 절차적 지식을 모델링하고 텍스트 마이닝 기법을 적용하여 절차적 지식을 추출하는 방법론에 대해 기술한다. 절차적 지식은 목적과 해법의 묶음으로, 해법은 다시 단위 절차 지식의 네트워크로 정의 하였고, 목적과 해법 정보 추출과 단위 절차 지식의 구성요소인 대상/행위/방법 개체를 인식하기 위해, 품사태깅, 구문분석, 술어-논항구조(Predicate-Argument Structure), 온톨로지 용어 매핑 정보 등에 기반한 기계학습 방법을 사용하였다. 실험을 위해 전문의와 함께 위함과 척추질환에 대한 1309 문서에 절차적 지식 태깅을 수행하였고, 이 문서 집합을 기반으로 목적/해법 추출 작업과 단위 절차 지식(대상질병/행위/적용방법) 추출 실험을 수행하여, 각각 82% 와 63%의 F-measure 값을 얻을 수 있었다.