• Title/Summary/Keyword: 온실관리

Search Result 548, Processing Time 0.032 seconds

Estimation of Domestic Greenhouse Gas Emission of Refrigeration and Air Conditioning Sector adapting 2006 IPCC GL Tier 2b Method (국내 냉동 및 냉방부문 온실가스 배출량 산정 - 2006 IPCC GL Tier 2b 적용 -)

  • Shin, Myung-Hwan;Lyu, Young-Sook;Seo, Kyoung-Ae;Lee, Sue-Been;Lim, Cheolsoo;Lee, Sukjo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 2012
  • The Government of South Korea has continued its effort to fixate virtuous circle of economic growth and climate change response to cope with international demands and pressure to commitment for greenhouse gas reduction effectively. Nationally, Korean Government has established "Enforcement of the Framework Act on Low carbon, Green Growth"(2010. 4. 13) to implement national mid-term GHG mitigation goal(30% reduction by 2020 compare to BAU), which established the foundation for phased GHG mitigation by setting up the sectoral and industrial goal, adopting GHG and Energy Target Management System. Also, follow-up measures are taken such as planning and control of mid-term and short-term mitigation target by detailed analysis of potential mitigation of sector and industry, building up the infrastructure for periodic and systematic analysis of target management. Likewise, it is required to establish more accurate, reliable and detailed sectoral GHG inventory for successfully establishment and implement the frame act. In comparison to the $CO_2$ emission, Especially fluorinated greenhouse gases (HFCs, PFCs, $SF_6$) are lacking research to build the greenhouse gas inventories to identify emissions sources and collection of the applicable collection activities data. In this study, with the refrigeration and air conditioning sector being used to fluorine refrigerant(HFCs) as the center, greenhouse gas emission estimation methodology for evaluating the feasibility of using this methodology look over and mobile air conditioning, fixed air conditioning, household refrigeration equipment, commercial refrigeration equipment for the greenhouse gas emissions were calculated. First look at in terms of methodology, refrigeration and air conditioning sector GHG emissions in developing country-specific emission factors and activity data of the industrial sector the construction of the DB is not enough, it's 2006 IPCC Guidelines Tier 2a (emission factor approach) rather than the Tier 2b (mass balance approach) deems appropriate, and each detail by process, sectoral activity data more accurate, if DB is built Tier 2a (emission factor approach) can be applied will also be judged. Refrigeration and air conditioning sector in 2009 due to the use of refrigerant greenhouse gas emissions ($CO_2eq.$) assessment results, portable air conditioner 1,974,646 ton to year, fixed-mount air conditioner 1,011,754 ton to year, household refrigeration unit 4,396 ton to year, commercial refrigeration equipment 1,263 ton to year was estimated to total 2,992,037 tons.

Estimation of greenhouse gas emissions from the landfill sector with the application of the 2006 IPCC guidelines and the change factors analysis (2006 IPCC 가이드라인 적용에 따른 폐기물 매립 부문의 온실가스 배출량 산정 및 변화 요인 분석)

  • Kim, Ran-Hui;Park, Jin-Kyu;Song, Sang-Hoon;Park, Ok-Yun;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.37-51
    • /
    • 2020
  • Following the Paris Agreement adopted at the end of 2015, global stock-taking has been planned to be carried out on a 5-year basis from 2023, and it is mandatory to report on national GHG inventory and progress toward achieving greenhouse gas reduction targets. To prepare for this, it is important to improve the reliability of estimation of the greenhouse gas emission, identify the characteristics of each greenhouse gas emission source, and manage the amount of emissions. As such, this study compared and analyzed the amount of emissions from the landfill sector using the 2000 GPG, the 2006 IPCC Guidelines, and the 2019 Refinement estimation method. As a result, in comparison to 2016, there were 2,287 Gg CO2_eq. in scenario 1, 1,870 Gg CO2_eq. in scenario 2-1, 10,886 Gg CO2_eq. in scenario 2-2, 10,629 Gg CO2_eq. in scenario 2-3, and 12,468 Gg CO2_eq. in scenario 3. Thus, when the 2006 IPCC Guidelines were applied with respect to 2000 GPG, it was revealed that greenhouse gas emissions have increased. Such difference in the emission changes was due to the changes in the calculation method and the emission factor values applied. Therefore, it is urgent to develop national-specific values of the emission factor based on characteristics of greenhouse gas emission in Korea.

DNDC Modeling for Greenhouse Gases Emission in Rice Paddy of South Korea and the Effect of Flooding Management Change and RCP 8.5 Scenario (RCP 8.5 시나리오와 관수 기법의 변화에 따른 논에서의 온실가스 배출 변화의 DNDC 모델을 통한 모의)

  • Min, Hyungi;Kim, Min-Suk;Kim, Jeong-Gyu;Hwang, Wonjae
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.189-198
    • /
    • 2018
  • In 21th century, climate change is one of the fundamental issue. Greenhouses gases are pointed as the main cause of climate change. Soil play a vital role of carbon sink and also can be a huge source of greenhouse gases defense on the management. Flux of greenhouse gases is not the only factor can be changed by climate change. Climate change can alter proper management. Temperature change will modify crop planting and harvesting date. Other management skills like fertilizer, manure, irrigation, tillage can also be changed with climate change. In this study, greenhouse gases emission in rice paddy in South Korea is simulated with DNDC model from 2011 - 2100 years. Climate for future is simulated with RCP 8.5 scenario for understanding the effect of climate change to greenhouse gases emission. Various rice paddy flooding techniques were applied to find proper management for future management. With conventional flooding technique, climate change increase greenhouse gases emission highly. Marginal flooding can decrease large amount of greenhouse gases emission and even it still increases with climate change, it has the smallest increasing ratio. If we suppose the flooding technique will change for best grain yield, dominant flooding technique will be different from conventional flooding to marginal flooding. The management change will reduce greenhouse gases emission. The result of study shows the possibility to increase greenhouse gases emission with climate change and climate change adaptation can show apposite result compared without the adaptation.

Characterization of Greenhouse Gas by Emission Regions and Sectors using GHG-CAPSS(2006) (GHG-CAPSS를 이용한 지역별, 부문별 온실가스 배출 특성 분석(2006))

  • Lee, Sue-Been;Lim, Jae-Hyun;Lyu, Young-Sook;Yeo, So-Young;Hong, You-Deog
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.69-77
    • /
    • 2011
  • While increased use of energy and fossil fuel in the recent years could worsen air quality and climate change, only few studies have been conducted on estimation of greenhouse gas emissions and characterization of emission types by sectors and regions in Korea. In this study, greenhouse gases emissions based on resions(Si, Gun, Gu) and emitted sectors(industry, transport, cemmercial and institutional, residential, waste, agriculture, others) were investigated using GHG-CAPSS(Greenhouse GasClean Air Policy Support System) developed to support to national and regional greenhouse gases reduction strategies. GHG-CAPSS follows IPCC(Intergovernmental Panel on Climate Change) Guideline methodology to categorize the emission sources and estimation of greenhouse gases using bottom-up approach. Estimated total greenhouse gases emissions were 588,011 thousand tons as $CO_2$ equivalent. Industry(50.1%) sector exhibited the highest portion followed by transport(17.6%), commercial and institutional(12.6%), residential(12.6%), waste(2.6%), agriculture(2.5%). Based on regional estimation, Gyeonggi(14.9%) demonstrated the highest emitted greenhouse gases among big cities followed by Jeonnam(12.4%), Gyeongbuk(11.0%), Ulsan(9.2%) and Seoul(8.9%).

Implement of Web-based Remote Monitoring System of Smart Greenhouse (스마트 온실 통합 모니터링 시스템 구축)

  • Dong Eok, Kim;Nou Bog, Park;Sun Jung, Hong;Dong Hyeon, Kang;Young Hoe, Woo;Jong Won, Lee;Yul Kyun, Ahn;Shin Hee, Han
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Growing agricultural products in greenhouses controlled by creating suitable climatic conditions and root zone of crop has been an important research and application subject. Appropriate environmental conditions in greenhouse are necessary for optimum plant growth improved crop yields. This study aimed to establish web-based remote monitoring system which monitors crops growth environment and status of crop on a real-time basis by applying to greenhouses IT technology connecting greenhouse equipment such as temperature sensors, soil sensors, crop sensors and camera. The measuring items were air temperature, relative humidity, solar radiation, CO2 concentration, EC and pH of nutrient solution, medium temperature, EC of medium, water content of medium, leaf temperature, sap flow, stem diameter, fruit diameter, etc. The developed greenhouse monitoring system was composed of the network system, the data collecting device with sensors, and cameras. Remote monitoring system was implemented in a server/client environment. Information on greenhouse environment and crops is stored in a database. Items on growth and environment is extracted from stored information, could be compared and analyzed. So, A integrated monitoring system for smart greenhouse would be use in application practice and understanding the environment and crop growth for smart greenhouse management. sap flow, stem diameter and pant-water relations

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.

Development of Greenhouse Environment Monitoring & Control System Based on Web and Smart Phone (웹과 스마트폰 기반의 온실 환경 제어 시스템 개발)

  • Kim, D.E.;Lee, W.Y.;Kang, D.H.;Kang, I.C.;Hong, S.J.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2016
  • Monitoring and control of the greenhouse environment play a decisive role in greenhouse crop production processes. The network system for greenhouse control was developed by using recent technologies of networking and wireless communications. In this paper, a remote monitoring and control system for greenhouse using a smartphone and a computer with internet has been developed. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on sensors and equipments network. Graphical user interface for an integrated management system was designed with bases on the HMI and the experimental results showed that a sensor data and device status were collected by integrated management in real-time. Because the sensor data and device status can be displayed on a web page, transmitted using the server program to remote computer and mobile smartphone at the same time. The monitored-data can be downloaded, analyzed and saved from server program in real-time via mobile phone or internet at a remote place. Performance test results of the greenhouse control system has confirmed that all work successfully in accordance with the operating conditions. And data collections and display conditions, event actions, crops and equipments monitoring showed reliable results.

Prediction Model for Gas-Energy Consumption using Ontology-based Breakdown Structure of Multi-Family Housing Complex (온톨로지 기반 공동주택 분류체계를 활용한 가스에너지 사용량 예측 모델)

  • Hong, Tae-Hoon;Park, Sung-Ki;Koo, Choong-Wan;Kim, Hyun-Joong;Kim, Chun-Hag
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.110-119
    • /
    • 2011
  • Global warming caused by excessive greenhouse gas emission is causing climate change all over the world. In Korea, greenhouse gas emission from residential buildings accounts for about 10% of gross domestic emission. Also, the number of deteriorated multi-family housing complexes is increasing. Therefore, the goal of this research is to establish the bases to manage energy consumption continuously and methodically during MR&R period of multi-family housings. The research process and methodologies are as follows. First, research team collected the data on project characteristics and energy consumption of multi-family housing complexes in Seoul. Second, an ontology-based breakdown structure was established with some primary characteristics affecting the energy consumption, which were selected by statistical analysis. Finally, a predictive model of energy consumption was developed based on the ontology-based breakdown structure, with application of CBR, ANN, MRA and GA. In this research, PASW (Predictive Analytics SoftWare) Statistics 18, Microsoft EXCEL, Protege 4.1 were utilized for data analysis and prediction. In future research, the model will be more continuous and methodical by developing the web-base system. And it has facility manager of government or local government, or multi-family housing complex make a decision with definite references regarding moderate energy consumption.

Environmental Prediction in Greenhouse According to Modified Greenhouse Structure and Heat Exchanger Location for Efficient Thermal Energy Management (효율적인 열에너지 관리를 위한 온실 형상 및 열 교환 장치 위치 개선에 따른 온실 내부 환경 예측)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Seok Jun;Kim, Dae Hyun;Oh, Jae-Heun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.278-286
    • /
    • 2021
  • In this study, based on the Computational Fluid Dynamics (CFD) simulation model developed through previous study, inner environmenct of the modified glass greenhouse was predicted. Also, suggested the optimal shape of the greenhouse and location of the heat exchangers for heat energy management of the greenhouse using the developed model. For efficient heating energy management, the glass greenhouse was modified by changing the cross-section design and the location of the heat exchanger. The optimal cross-section design was selected based on the cross-section design standard of Republic of Korea's glass greenhouse, and the Fan Coil Unit(FCU) and the radiating pipe were re-positioned based on "Standard of greenhouse environment design" to enhance energy saving efficiency. The simulation analysis was performed to predict the inner temperature distribution and heat transfer with the modified greenhouse structure using the developed inner environment prediction model. As a result of simulation, the mean temperature and uniformity of the modified greenhouse were 0.65℃, 0.75%p higher than those of the control greenhouse, respectively. Also, the maximum deviation decreased by an average of 0.25℃. And the mean age of air was 18 sec. lower than that of the control greenhouse. It was confirmed that efficient heating energy management was possible in the modified greenhouse, when considered the temperature uniformity and the ventilation performance.

Construction Materials Managing System Based on RFID (RFID 기반의 건축자재 관리 시스템)

  • Kim, Tae-yun;Hwang, Suk-seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.907-914
    • /
    • 2015
  • Due to the global warming, the restriction for emitting the green-house gas is strengthened and a main ingredient of the green-house gas is carbon dioxide ($CO_2$). In order to reduce the amount of $CO_2$, the low-carbon and long-life of the construction and the construction materials management system based on the radio frequency identification (RFID) technique have been actively studied in the construction field. The conventional construction management system based on RFID only focuses on the study and experiment for managing the used amount and location of the construction materials in the construction stage, but it does not consider the study for the status management system for the recycling materials in the construction stage or the building deactivation. In this paper, we propose the effective RFID system for managing the status of the construction materials during the construction stage or the building deactivation. Employing RFID with the frequency of 900MHz, the proposed system consists of the reader unit, communication unit, and memory unit, and its tags are attached in the surface or inside of the construction materials.