• Title/Summary/Keyword: 온센서 AI

Search Result 15, Processing Time 0.036 seconds

Deep Learning based Visual-Inertial Drone Odomtery Estimation (딥러닝 기반 시각-관성을 활용한 드론 주행기록 추정)

  • Song, Seung-Yeon;Park, Sang-Won;Kim, Han-Gyul;Choi, Su-Han
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.842-845
    • /
    • 2020
  • 본 연구는 시각-관성 기반의 딥러닝 학습으로 자유분방하게 움직이는 드론의 주행기록을 정확하게 추정하는 것을 목표로 한다. 드론의 비행주행은 드론의 온보드 센서와 조정값을 이용하는 것이 일반적이다. 본 연구에서는 이 온보드 센서 데이터를 학습에 사용하여 비행주행의 위치추정을 실험하였다. 선행연구로써 DeepVO[1]룰 구현하여 KITTI[3] 데이터와 Midair[4] 데이터를 비교, 분석하였다. 3D 좌표면에서의 위치 추정에 선행연구 모델의 한계가 있음을 확인하고 IMU를 Feature로써 사용하였다. 본 모델은 FlowNet[2]을 모방한 CNN 네트워크로부터 Optical Flow Feature에 IMU 데이터를 더해 RNN으로 학습을 진행하였다. 본 연구를 통해 주행기록 예측을 다소 정확히 했다고 할 수 없지만, IMU Feature를 통해 주행기록의 예측이 가능함을 볼 수 있었다. 본 연구를 통해 시각-관성 분야에서 사람의 지식이나 조정이 들어가는 센서를 융합하는 기존의 방식에서 사람의 제어가 들어가지 않는 End-to-End 방식으로 인공지능을 학습했다. 또한, 시각과 관성 데이터를 통해 주행기록을 추정할 수 있었고 시각적으로 그래프를 그려 정답과 얼마나 차이 있는지 확인해보았다.

Addressing Inter-floor Noise Issues in Apartment Buildings using On-Sensor AI Embedded with TinyML on Ultra-Low-Power Systems

  • Jae-Won Kwak;In-Yeop Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.75-81
    • /
    • 2024
  • In this paper, we proposes a method for real-time processing of inter-floor noise problems by embedding TinyML, which includes a deep learning model, into ultra-low-power systems. The reason this method is feasible is because of lightweight deep learning model technology, which allows even systems with small computing resources to perform inference autonomously. The conventional method proposed to solve inter-floor noise problems was to send data collected from sensors to a server for analysis and processing. However, this centralized processing method has issues with high costs, complexity, and difficulty in real-time processing. In this paper, we address these limitations by employing On-Sensor AI using TinyML. The method presented in this paper is simple to install, cost-effective, and capable of processing problems in real-time.

Dedicated fire detection AIoT platform for socially vulnerable districts (사회적 취약지구를 위한 전용 화재감지 AIoT 플랫폼)

  • A-young Choi ;Hye-Been Lee;Eun-Seo Choi;Jea-Jun Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1012-1013
    • /
    • 2023
  • 본 논문의 사회적 취약지구를 위한 전용 화재감지 AI'sTory 플랫폼은 달동네와 판자촌과 같이 소외계층이 집약된 곳이라면 노후된 기기와 전선들이 많을 것이고 그렇다면 전기적 요인으로 인한 화재가 발생할 것이라는 가설에서부터 시작한다. 피해의 최소화를 위해 고안한 사회적 취약지구를 위한 전용 화재감지 AI'sTory 는 스파크를 감지하고, 전선 주위의 발열량을 모니터링하며, 화재를 감지한 즉시 소방서로 연락을 취하는 인공지능 시스템이다. 더 나아가 센서로부터 데이터를 받아 매일 온·습도, 전력 접촉부의 온도, 계절 등 여러 환경을 고려해 화재가 발생할 확률을 계산한다. 또한 화재가 발생하지 않아도 매일 화재 발생 위험률을 제공한다. 이 정보를 제공하기 위해 사회적 취약지구를 위한 전용 화재감지 AI'sTory 는 하드웨어와 소프트웨어, 인공지능으로 구성하였다.

IoT industrial site safety management system incorporating AI (AI를 접목한 IoT 기반 산업현장 안전관리 시스템)

  • Lee, Seul;Jo, So-Young;Yeo, Seung-Yeon;Lee, Hee-Soo;Kim, Sung-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.118-121
    • /
    • 2022
  • 국내 산업재해 사고 사망자의 상당수가 건설업에서 발생하고 있다. 건설 현장에는 굴삭기, 크레인과 같은 중장비가 많고 높은 곳에서 작업하는 경우가 흔해 위험 요소에 노출될 가능성이 높다. 물리적 사고 외에도 작업 중 발생하는 미세먼지에는 여러 유해 인자가 존재하여 건설근로자들에게 호흡기질환과 같은 직업병을 유발한다. 정부에서는 산업현장 안전 관리의 중요성이 증가함에 따라 각종 산업재해로부터 근로자를 보호하기 위한 법안을 마련하였다. 따라서 건설 현장의 경우 산업재해를 방지하기 위해서 위험요소를 사전에 인지하고 즉각 대응할 수 있는 기술이 필요하다. 본 연구에서는 인공지능(AI)과 사물인터넷(IoT)을 통한 자동화 기술을 활용하여 24시간 안전 관리 시스템을 제안한다. 제안하는 IoT 기반 통합안전 관리 시스템은 AI를 적용한 CCTV를 통해 산업 현장을 모니터링하고, 다수의 IoT 센서가 측정한 수치를 근로자 및 관리자가 실시간으로 확인할 수 있게 하여 산업 현장 내 안전사고를 예방한다. 구체적으로 어플리케이션을 통해 미세먼지 농도, 가스 농도, 온도, 습도, 안전모 착용 여부 등을 모니터링할 수 있다. 모니터링 중에 유해물질의 농도가 일정 수치를 넘기거나 안전모를 착용하지 않은 근로자가 발견될 경우 근로자 및 관리자에게 경고 알림을 발송한다. 유해물질 농도는 IoT 센서를 통해 측정하며 안전모 착용 여부는 카메라 센서에 딥러닝 모델을 적용하여 인식하였다. 본 연구에서 제시한 통합안전관리시스템을 통해 건설현장을 비롯한 산업현장의 산업재해 감소와 근로자 안전 증진에 기여할 수 있을 것으로 기대한다.

Building Fire Monitoring and Escape Navigation System Based on AR and IoT Technologies (AR과 IoT 기술을 기반으로 한 건물 화재 모니터링 및 탈출 내비게이션 시스템)

  • Wentao Wang;Seung-Yong Lee;Sanghun Park;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.159-169
    • /
    • 2024
  • This paper proposes a new real-time fire monitoring and evacuation navigation system by integrating Augmented Reality (AR) technology with Internet of Things (IoT) technology. The proposed system collects temperature data through IoT temperature measurement devices installed in buildings and automatically transmits it to a MySQL cloud database via an IoT platform, enabling real-time and accurate data monitoring. Subsequently, the real-time IoT data is visualized on a 3D building model generated through Building Information Modeling (BIM), and the model is represented in the real world using AR technology, allowing intuitive identification of the fire origin. Furthermore, by utilizing Vuforia engine's Device Tracking and Area Targets features, the system tracks the user's real-time location and employs an enhanced A* algorithm to find the optimal evacuation route among multiple exits. The paper evaluates the proposed system's practicality and demonstrates its effectiveness in rapid and safe evacuation through user experiments based on various virtual fire scenarios.

Research on black ice detection using IoT sensors - Building a demonstration infrastructure - (IoT 센서를 이용한 블랙아이스 탐지에 관한 연구 - 실증 인프라 구축 -)

  • Min Woo Son;Byun Hyun Lee;Byung Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.263-263
    • /
    • 2023
  • 블랙아이스는 눈에 쉽게 구분되지 않아 많은 교통사고를 초래하고 있다. 한국교통연구원 교통사고분석시스템에 따르면, 2017년부터 2021년까지 5년간의 서리/결빙으로 인한 교통사고 사망자는 122명, 적설로 인한 교통사고 사망자는 40명으로, 블랙아이스는 적설에 비해 위험성이 높은 것으로 나타난다. 과거의 다양한 연구에서 블랙아이스 생성조건을 기압과 한기 축적등의 조건에서 예측해왔지만, 이러한 기상학적 모델은 봄철 해빙기의 일교차로 인한 눈의 해동과 재냉각과 같은 다양한 기상 조건에서의 블랙아이스 탐지가 어렵다는 한계가 있어 최근에는 이미지 판별과 딥러닝모델(YOLO 등)을 기반으로 한 센서가 제시되고 있다. 그러나, 이러한 방법은 충분한 컴퓨팅 자원이 뒷받침되어야 하며, 블랙아이스 탐지까지 걸리는 속도가 빠르지 못한 편으로, 블랙아이스 초입 구간에서의 제동에 취약하다는 잠재적인 약점을 가지고 있다. 그러므로 본 연구에서는 블랙아이스의 주 원인인 서리나 어는비가 발생하기 위해서 주변 공기가 이슬점 온도 이하, 노면온도와 이슬점이 어는점보다 낮아야 함을 이용, IoT 센서 모듈을 통해 Magnus 방정식으로 계산한 이슬점 온도와 노면 온도를 사용하는 이동식 블랙아이스 추정 장치를 제시한다. 본 장치는 대기압, 온도, 습도로부터 계산된 이슬점 온도와 노면 온도를 통한 서리발생 가능성과 대기 온도, 노면 온도를 통해 어는비의 발생환경 여부를 계산한다. 본 연구 결과를 통해 블랙아이스 추정과 기상정보 생산을 동시에 가능케 하며, 추정 결과를 통합 수집서버에 전송함으로서 운전자에게 전방 블랙아이스 위험 구간을 조기에 전달하는 시스템과 이를 관리하기 위한 인프라를 구축하여 운전 시 결빙 미끄러짐 사고를 저감하고자 한다.

  • PDF

Development of Insole for AI-Based Diagnosis of Diabetic Foot Ulcers in IoT Environment (IoT 환경에서 AI 기반의 당뇨발 진단을 위한 깔창 개발)

  • Choi, Won Hoo;Chung, Tai Myoung;Park, Ji Ung;Lee, Seo Hu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.83-90
    • /
    • 2022
  • Diabetes is a common disease today, and there are also many cases of developing into serious complications called Diabetic Foot Ulcers(DFU). Diagnosis and prevention of DFU in advance is an important task, and this paper proposes the method. Based on existing studies introduced in the paper, it can be seen that foot pressure and temperature information are deeply correlated with DFU. Introduce the process and architecture of SmarTinsole, an IoT device that measures these indicators. Also, the paper describes the preprocessing process for AI-based diagnosis of DFU. Through the comparison of the measured pressure graph and the actual human step distribution, it presents the results that multiple information collected in real-time from SmarTinsole are more efficient and reliable than the previous study.

MLOps workflow language and platform for time series data anomaly detection

  • Sohn, Jung-Mo;Kim, Su-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.19-27
    • /
    • 2022
  • In this study, we propose a language and platform to describe and manage the MLOps(Machine Learning Operations) workflow for time series data anomaly detection. Time series data is collected in many fields, such as IoT sensors, system performance indicators, and user access. In addition, it is used in many applications such as system monitoring and anomaly detection. In order to perform prediction and anomaly detection of time series data, the MLOps platform that can quickly and flexibly apply the analyzed model to the production environment is required. Thus, we developed Python-based AI/ML Modeling Language (AMML) to easily configure and execute MLOps workflows. Python is widely used in data analysis. The proposed MLOps platform can extract and preprocess time series data from various data sources (R-DB, NoSql DB, Log File, etc.) using AMML and predict it through a deep learning model. To verify the applicability of AMML, the workflow for generating a transformer oil temperature prediction deep learning model was configured with AMML and it was confirmed that the training was performed normally.

Development of Wire/Wireless Communication Modules using Environmental Sensor Modules for LNG Storage Tanks (LNG 저장탱크용 환경 센서 모듈을 이용한 유무선 통신 모듈 개발)

  • Park, Byong Jin;Kim, Min Sung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Accidents are steadily occurring due to machine defects and carelessness during LNG storage operations. In previous studies, an environmental sensor module capable of measuring pressure, temperature, gas concentration, and flow to detect danger in advance was developed and the response speed according to the amount of leaked gas was measured. This paper proposes the development of a wired and wireless communication module that transmits data measured by the environmental sensor module to embedded devices connected to wired and wireless networks of SPI, UART, and LTE. First, a data communication module capable of interworking with an environmental sensor is designed. Design a protocol between devices in the Local Control Part and wired and wireless protocols in the Local Control Part and Remote Control Part. Ethernet, WiFi, and LTE communication modules were designed, and UART and SPI channels that can be linked with embedded controllers were designed. As a result, it was confirmed through a UI (User Interface) that each embedded device transmits data measured by the environmental sensor module while simultaneously communicating on a wired and wireless basis.