Technology trend on AI healthcare using on-body sensor data

온바디 센서데이터를 활용한 인공지능 헬스케어 기술 동향

  • 임지연 (한국전자통신연구원 웨어러블컴퓨팅연구실)
  • Published : 2019.03.28

Abstract

Keywords

References

  1. 정부연, "웨어러블 디바이스 시장 현황과 전망", 정보통신방송정책 제30권 20호 통권 680호 2018년
  2. "고(高)성장 '스마트 워치', 기기 활용도 높아지며 기대감 확산", ICT Brief, 정보통신기획평가원, 2019-06호 p.7 2019년
  3. https://en.wikipedia.org/wiki/Accelerometer, 2019. 3. 12
  4. https://en.wikipedia.org/wiki/Gyroscope, 2019. 3. 12
  5. 테크앤비욘드 편집부, "[스마트 워치/기술] 마음대로 바꾸면서 가볍고 똑똑하게", 머니투데이 2014. http://news.mt. co.kr/mtview.php?no=2014071709307198258, 2019. 3. 12
  6. https://www.empatica.com/en-int/research/science/, 2019. 3. 14
  7. 블로터, "애플워치4 심전도 기능 탑재... 헬스케어 업체로 진화하는 애플", https://www.bloter.net/archives/319452, 2019. 3. 14
  8. https://valencell.com/press/2016/12/valencell-showcase-accuracy-innovation-biometric-wearables-hearablesces-2017/, 2019. 3.14
  9. Kiaghadi, A., Baima, M., Gummeson, J., Andrew, T., & Ganesan, D, "Fabric as a Sensor: Towards Unobtrusive Sensing of Human Behavior with Triboelectric Textiles", In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, ACM, pp. 199-210, 2018.
  10. Google, https://atap.google.com/jacquard/, 2019.03.11
  11. Liu, C., Zhang, L., Liu, Z., Liu, K., Li, X., & Liu, Y, "Lasagna: towards deep hierarchical understanding and searching over mobile sensing data", In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, ACM, pp. 334-347, 2016.
  12. Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., & Yu, Z, "Sensor-based activity recognition", IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 42(6), pp.790-808, 2012. https://doi.org/10.1109/TSMCC.2012.2198883
  13. 전기만, 김현우, "멀티센서 기반의 개인형 라이프로그 서비스 시스템 구현에 관한 연구", 대한전자공학회 학술대회, 767 권, 768호, 2017년
  14. Ballinger, B., Hsieh, J., Singh, A., Sohoni, N., Wang, J., Tison, G. H., ... & Pletcher, M. J., "DeepHeart: semi-supervised sequence learning for cardiovascular risk prediction", In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
  15. Lichstein, K. L., Stone, K. C., Donaldson, J., Nau, S. D., Soeffing, J. P., Murray, D., ... & Aguillard, R. N, "Actigraphy validation with insomnia. Sleep", Vol. 29(2), pp.232-239, 2006.
  16. Girschik, J., Fritschi, L., Heyworth, J., & Waters, F, "Validation of self-reported sleep against actigraphy", Journal of epidemiology, Vol. 22(5), pp.462-468, 2012. https://doi.org/10.2188/jea.JE20120012
  17. Sathyanarayana, A., Joty, S., Fernandez-Luque, L., Ofli, F., Srivastava, J., Elmagarmid, A. & Taheri, S, "Sleep quality prediction from wearable data using deep learning", JMIR mHealth and uHealth, Vol. 4(4), 2016.
  18. Min, J. K., Doryab, A., Wiese, J., Amini, S., Zimmerman, J., & Hong, J. I, "Toss'n'turn: smartphone as sleep and sleep quality detector". In Proceedings of the SIGCHI conference on human factors in computing systems, ACM, pp. 477-486, 2014.
  19. 박성수, & 이건창, "심박변이도 기반 감정예측 인공신경망을 이용한 감정예측 추론과정 메커니즘에 관한 연구", 한국컴퓨터정보학회논문지, Vol. 22(7), pp.75-82, 2017. https://doi.org/10.9708/JKSCI.2017.22.05.075
  20. Shin, W., Huh, B., & Park, M, "Development of Emotion Recovery System for Preventing Cumulative Psychological Stress of Emotional Workers", 대한인간공학회 학술대회논문집, pp. 17-22, 2017.
  21. Sadeh, A, "The role and validity of actigraphy in sleep medicine: an update", Sleep medicine reviews, Vol. 15(4), pp.259-267, 2011. https://doi.org/10.1016/j.smrv.2010.10.001
  22. Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., & Patras, I, "Deap: A database for emotion analysis; using physiological signals". IEEE transactions on affective computing, Vol. 3(1), pp. 18-31, 2012. https://doi.org/10.1109/T-AFFC.2011.15
  23. Ringeval, F., Sonderegger, A., Sauer, J., & Lalanne, D, "Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions", In 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), IEEE, pp. 1-8, 2103
  24. Can, Y. S., Arnrich, B., & Ersoy, C. "Stress Detection in Daily Life Scenarios Using Smart Phones and Wearable Sensors: A Survey", Journal of biomedical informatics, 103139, 2019.
  25. Rohani, D. A., Faurholt-Jepsen, M., Kessing, L. V., & Bardram, J. E, "Correlations Between Objective Behavioral Features Collected From Mobile and Wearable Devices and Depressive Mood Symptoms in Patients With Affective Disorders: Systematic Review", JMIR mHealth and uHealth, Vol. 6(8), 2018.