• Title/Summary/Keyword: 온도 조절장치

Search Result 280, Processing Time 0.029 seconds

Cracker Cell을 이용한 $CuInSe_2$ 박막의 셀렌화 공정 연구

  • Go, Hang-Ju;Kim, Hyo-Jin;Han, Myeong-Su;Kim, Dae-Yeong;Park, Gwang-Hun;Park, Jae-Hyeong;Jo, Yu-Seok;Ha, Jun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.163-163
    • /
    • 2011
  • 셀레늄(Selenium: Se) cracker cell을 이용하여 셀렌화한 $CuInSe_2$ (CIS)박막에 대해 연구한 결과를 발표하고자 한다. 화석연료의 과도한 사용으로 지구온난화라는 환경문제가 대두되면서 영구적이고 무상의 태양에너지 이용에 대한 필요성이 점차 높아지고 있다. 빛에너지를 전기에너지로 변화시키기 위한 태양전지는 재료에 따라 다양하게 개발되고 있으며 그 중 가장 주목을 받고 있는 것 중의 하나가 $CuInSe_2$을 광흡수층으로 하는 CIS 박막 태양전지이다. CIS 박막은 태양전지의 광흡수층으로 사용되는데 직접천이형 밴드구조를 가지고 있고, 약 $10^5$ $cm^{-1}$의 높은 광흡수계수를 가지고 있어 태양전지 광흡수층으로 적합한 물질로 각광받고 있다. CIS는 에너지 밴드갭이 ~1 eV로 실리콘과 유사한 밴드갭을 가지고 있으나 이는 Ga, Al을 In 대신 치환함으로 조절할 할 수 있다. 무엇보다도 sodalime 유리와 같은 저가의 기판위에 스퍼터와 같은 장치로 대면적 CIS 박막태양전지를 만들 수 있다는 것이 산업적인 면에서 장점으로 알려져 있다. 본 연구에서는 sodalime 유리기판 위에 스퍼터 방법으로 CIS 박막을 증착하고 Se cracker cell로 셀렌화하여 CIS 박막을 제조하는 것을 조사연구 하였다. 스퍼터를 이용하여 유리기판위에 Mo (Molybdenum)을 증착하고 그 위에 Cu-In-Se박막을 증착하였다. Cu-In-Se/Mo/유리기판 시료는 동일 챔버에서 Se cracker cell을 이용하여 셀렌화 처리 하였다. 물성비교를 위하여 Knudson-cell을 이용한 셀렌화도 시행하였다. Se cracker cell은 고체 Se를 가열하는 부분(R-zone)과 Se flux를 cracking 하는 부분(C-zone)으로 나누어져 있으며 C-zone은 700$^{\circ}C$로 고정하였다. 셀렌화 기판 온도는 425$^{\circ}C$로 고정하였고 Se cracker 온도는 330~375$^{\circ}C$까지 변화시켜 가며 CIS 박막을 제조하였다. 제조된 CIS 박막의 물성 조사는 사진, 현미경, SEM, EDX, XRD, Hall effects를 이용하였다. Se cracker cell로 셀렌화한 CIS 박막은 island 구조를 하고 있음을 알 수 있었다. CIS 박막의 island의 크기와 모양은 셀렌화시 R-zone 온도(Cu-In-Se 박막에 조사되는 셀레늄의 량)에 큰 영향을 받았다. 셀렌화시 셀레늄량이 적을 때는 island가 커지며 불균일해지고 셀레늄량이 많을 때 island가 작고 균일해지는 경향을 SEM을 통해 관찰할 수 있었다. X-ray 회절을 통해 셀레늄량이 적을 경우 CIS 결정이외의 결정이 박막내에 형성됨을 알 수 있었다. 학술회의에서 Se cracker cell을 이용한 셀렌화에 관한 보다 깊은 연구결과를 발표하고자 한다.

  • PDF

Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository (복합 처분환경 모사조건에서의 KURT 화강암의 역학적 물성 변화 평가)

  • Park, Seunghun;Kim, Jin-Seop;Kim, Geon Young;Kwon, Sangki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.501-518
    • /
    • 2019
  • The rock properties measured under in-situ geological condition can be used to increase the reliability in numerical simulations with regard to the long-term performance of a high-level waste repository. In this study, the change in mechanical properties of KURT (Korea atomic energy research institute Underground Research Tunnel) granite was evaluated under the simulated THM (Thermo-Hydro-Mechanical) coupled condition due to a deep geological formation in the disposal repository. The rock properties such as uniaxial compression strength, indirect tensile strength, elastic modulus and Poisson's ratio were measured under the coupled test conditions (M, HM, TM, THM). It was found that the mechanical properties of KURT granite is more susceptible to the change in saturation rather than temperature within the test condition of this study. The changes in uniaxial compression strength and indirect tensile strength from the rock samples of dried or saturated conditions showed the maximum relative error of about 20% and 13% respectively under the constant temperature condition. Therefore, it is necessary to use the material properties of rock measured under the coupled THM condition as input parameters for the numerical simulation of long-term performance assessment of a disposal repository

Effect of Biodegradable Waste Particle Size on Aerobic Stabilization Reactions in MBT System (생분해성 폐기물 입경이 MBT시스템과 연계된 호기성안정화반응에 미치는 영향)

  • Kwon, Sang-Hagk;Ban, Jong-Sub;Kim, Su-Jin;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.523-529
    • /
    • 2011
  • This study has been performed to examine the influence of the size of particles on the stabilization in the aerobic stabilization equipment connected with MBT system. The biodegradable waste inside the reactor (60% of food waste, 25% of paper waste, 2% of wood waste and 5% of compost) has been charged in same composition. The degree of stabilization was compared and analyzed after charging with adjustment of particle size in 5 mm, 10 mm, 20 mm, 50 mm, 100 mm and state of no separation. The experiment revealed that highest temperature beyond $65^{\circ}C$ was shown in the particle size of less than 50 mm in change of temperature and the highest temperature was about $50^{\circ}C$ in reactor of 100 mm and no separation. The proportionality between generated quantity of $CO_2$ and particle size was not observed, even the highest in generated quantity was shown in over 100 mm. The weight changes based on wet and dry conditions in the reaction process showed the 30% and 46% of reduction in the smallest particle size of 5 mm and it showed the trend of the lower reduction rate at the bigger particle size. The water soluble $COD_{Cr}$ and TOC showed the reduction rate of 60% in reactor of particle size in 100 mm and no separation while the reduction rate comparing to the initial stage of reaction in the reactor of less than 50 mm was 80%. Such result derived the conclusion of acceleration in the decomposing stabilization of biodegradable material due to the decomposing rate of organic substance as the particle size of biodegradable waste gets smaller. It is concluded as necessary to react in adjustment under 50 mm of particle size as much as possible.

Long-term Climate Change Research Facility for Trees: CO2-Enriched Open Top Chamber System (수목의 장기 기후변화 연구시설: CO2 폭로용 상부 개방형 온실)

  • Lee, Jae-Cheon;Kim, Du-Hyun;Kim, Gil-Nam;Kim, Pan-Gi;Han, Sim-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2012
  • The open-top chamber (OTC) system is designed for long term studies on the climate change impact on the major tree species and their community in Korea. In Korea Forest Research Institute (KFRI), the modified OTC system has been operating since September 2009. The OTC facility consists of six decagon chambers (10 meters in diameter by 7 meters high) with controlled gas concentration. In each chamber, a series of vertical vent pipes are installed to disperse carbon dioxide or normal air into the center of the chamber. The OTC is equipped with remote controlled computer system in order to maintain a stable and elevated concentration of carbon dioxide in the chamber throughout the experimental period. The experiment consisted of 4 treatments: two elevated $CO_2$ levels ($1.4{\times}$ and $1.8{\times}$ ambient $CO_2$) and two controls (inside and outdoors of the OTC). Average operational rate was the lowest (94.2%) in June 2010 but increased to 98% in July 2010 and was 100% during January to December 2011. In 2010~2011, $CO_2$ concentrations inside the OTCs reached the target programmed values, and have been maintained stable in 2011. In 2011, $CO_2$ concentrations of 106%, 100% and 94% of target values has been recorded in control OTC, $1.4{\times}$ $CO_2$-enriched OTC and $1.8{\times}$ $CO_2$-enriched OTC, respectively. With all OTC chambers, the difference between outside and inside temperatures was the highest ($1.2{\sim}2.0^{\circ}C$) at 10 am to 2 pm. Temperature difference between six OTC chambers was not detected. The relative humidity inside and outside the chambers was the same, with minor variations (0~1%). The system required the highest amount of $CO_2$ for operation in June, and consumed 11.33 and 17.04 ton in June 2010 and 2011, respectively.

Decomposition of EVA(Ethylene vinyl acetate) used as an adhesion of photovoltaic(PV) module by ultrasonic irradiation in bath-type cleaner (Bath-type 초음파(超音波) 세척기(洗滌器)를 이용(利用)한 태양전지모듈 접착제(接着劑) EVA(Ethylene Vinyl Acetate) 분해특성(分解特性))

  • Kim, Young-Jin;Lee, Jae-Ryeong
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.50-55
    • /
    • 2011
  • Using ultrasonic irradiation, the separation and recovery of PV cell, made of silicon wafer, from PV module was carried out through selective decomposition of EVA used as an interlaminated binder. The ultrasonic cleaner of bath-type (Output: 130 W, Frequency: 40 kHz) was used as an ultrasonic apparatus in this research. With the fixed distance of 2 cm, from ultrasonic generator to PV cell, the experiment of EVA decomposition was performed in various organic solvents such as Toluene, Trichloroethylene, O-dichlorobenzene, Benzene. And also their concentrations and temperature was changed to survey the optimum conditions. However EVA can be decomposed perfectly at $55^{\circ}C$ within 160 min in 5 M of all kinds of solvent, PV cell may be recovered with being damaged or broken severely. This damage may be resulted from the swelling of EVA in the process of decomposition. Whereas, at the condition of 5 M at $65^{\circ}C$, PV cell can be recovered with the state of minor damage or crack. This implies that the decomposition rate of EVA increases with an increase of temperature, thereby EVA can be decomposed before the swelling of EVA layer. Conclusively, it is possible for PV cell to be recovered within 40 min, at $65^{\circ}C$ in 5 M, with less damage.

Analysis of the Insulation Effectiveness of the Thermal Insulator by the Installation Methods (보온단열재의 설치방법에 따른 보온성 효과 분석)

  • Kim, Young-Bok;Lee, Si-Young;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.332-340
    • /
    • 2009
  • In this study, the thermal insulation effectiveness of the greenhouse insulators by the installation methods was investigated to find the right installation way of the insulation materials. Physical properties of the insulators such as thickness, air transmissivity, apparent density, ultraviolet rays cutoff ratio, reflectance, thermal conductivity, moisture absorptivity were evaluated and the insulation ability of the insulators were measured by the module experiments. For the same insulator, the insulation ability of the case with the outward direction of the black colored face, i.e., with the inward direction of the white colored face, was better than that of vice versa. The case of the black colored both surfaces was better than the case of the white colored both surfaces. For aluminium reflection material, the case with the outward direction of the lustre face, i.e., with the inward direction of the non-lustre face, was better than that of vice versa. For the same material with the inner thin polyethylene foam (or polyester) and the chemical wool, the case with the outward direction of the inner thin polyethylene foam (or polyester), i.e., with the inward chemical wool, was better than that of vice versa. Addition of the inner thin polyethylene foam increased the insulation effect very much.

Trickling Performance of Individual Watering System with Variety, Thickness and Firing Temperature of Ceramic (세라믹 종류, 두께 및 소성온도에 따른 식물개체제어형 세라믹 자동점적관수시스템의 점적성능)

  • 양원모
    • Journal of Bio-Environment Control
    • /
    • v.8 no.4
    • /
    • pp.257-264
    • /
    • 1999
  • The trickling system for automatic and individual watering were made with Bunchungto, Ongito and Backjato. The thickness of ceramics were 1.0, 1.5, 2.0, 2.5 and 3.0mm. And they were fired in a muffle furnace at five different temperatures between 500 and 900'E during 12 hours. The upper plastic parts of sensor consisted of five elements made by steel mold. With the photo fiber sensor attached to datalogger, an accumulated amount of drops for every 10 minutes were recorded. The porosity is higher in the order of Bunchungto, Backjato and Ongito; also, as the firing temperature is higher and the thickness is thicker, the porosity is higher. The ceramic sensors consisted of $SiO_2$ of 54.17~71.62wt.%, A1$_2$ $O_3$ of 15.42~33.79wt.% and the rest of 10wt.%, those were Fe$_2$ $O_3$, CaO, MgO, Na$_2$O, $K_2$O, Ti $O_2$, P$_2$ $O_{5}$. The pattern of dropping were changed according to the variety, thickness and firing temperature of ceramics. As the ceramics were made thicker, the fluctuation of dropping became more rapid, but it did not regularly work at 1mm thickness. As the firing temperature of ceramics became higher, the fluctuation of dropped amount became more rapid.

  • PDF

Control of Small PEM Fuel Cell Stack by a Microprocessor (마이크로프로세서를 이용한 소형 PEM 연료전지 스택의 제어)

  • Kim, Tae-Hoon;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.469-475
    • /
    • 2008
  • In this paper, control of small PEM(Proton Exchange Membrane) fuel cell stack by a microprocessor is introduced. The water management of fuel cell stack inside, a key technique in fuel cell control, can be achieved by adjusting the required air flow for fuel and cooling, and by purging the excessive water from the stack. It is very important to precisely control the BOS(Balance of Stack) since the stable operation of the fuel cell system mainly depends on it. In this study the fuel efficiency of the system is improved by the control of the system based on the measured air flow and purge cycle during the optimal operation and its effectiveness is proved by the experiments. The operating stability of the system is improved by the developed controller using a microprocessor and it is expected to be widely used for the control of small PEM fuel cell stack.

이중 주파수(Dual Frequency)를 이용한 유도결합 플라즈마 소스의 방전 특성에 관한 연구

  • Kim, Tae-Hyeong;Kim, Gyeong-Nam;Mishra, Anurag;Jeong, Ho-Beom;Bae, Jeong-Un;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.175-175
    • /
    • 2012
  • 플라즈마를 이용하는 공정은 평판 디스플레이와 박막 트렌지스터, LCD 같은 반도체 산업에 널리 사용되고 있다. 최근 이와 같은 산업을 위한 공정은 마이크로 단위 이하에서 진행되고 있으며, 그 크기가 작아질수록 공정을 위한 비용은 증가하게 되었다. 따라서 제품의 대량생산 및 원가절감을 위해 웨이퍼의 대구경화가 진행되었고, 그런 대구경의 웨이퍼을 생산하기 위한 대면적 플라즈마 소스 개발 역시도 필요하게 되었다. 그리고 2014년에는 450 mm 크기의 웨이퍼가 사용될 것으로 예상되고 있다. 450 mm 대구경 웨이퍼용 유도결합플라자마 장치를 이용하여 플라즈마의 특성을 Langmuir probe를 사용하여 측정하였다. 플라즈마를 방전시키는 안테나의 형태는 spiral 형태의 안테나를 사용하였고, 이중주파수를 사용하기 위해 spiral 형태의 안테나를 두개로 나누어 안쪽의 안테나에는 2 Mhz를 바깥쪽의 안테나에는 13.56 Mhz를 인가하였다. 공정 압력은 10 mTorr로 유지하고 안쪽의 2 Mhz 안테나에는 100~800 W까지 변화시키고 바깥쪽의 13.56 Mhz 안테나에는 100~1,000 W까지 변화시켜 그 때의 플라즈마의 특성을 분석해 보았다. Langmuir probe를 이용하여 방전된 플라즈마를 관찰한 결과, 기판 위에서의 플라즈마 균일도가 4~23%가 되는 것을 확인 할 수 있었다. 13.56 Mhz의 인가되는 파워를 고정 시키고 2 Mhz만을 변화시켰을 경우 2 Mhz의 파워를 400 W까지 증가시켰을 때는 플라즈마의 밀도가 서서히 증가하였으나 400 W 이상에서는 밀도가 크게 증가하는 것을 볼 수 있었다. 하지만 플라즈마의 온도와 potential의 경우 밀도와는 반대로 2 Mhz에 인가되는 파워가 증가 될수록 감소하는 경향을 보였다. 위의 실험을 통해 우리는 전자에너지분포함수(EEDFs)를 얻을 수 있었고, 그 안에서 낮은 주파수(2 Mhz)를 이용하여 낮은 에너지를 가진 전자의 밀도를 조절할 수 있다는 것과 높은 주파수(13.56 Mhz)에 인가된 파워가 증가함에 따라 높은 에너지를 얻을 수 있다는 결과를 확인 할 수 있었다.

  • PDF

A study on growing of bulk AlN single crystals grown having a (011) growth face of by PVT method (PVT법을 이용한 (011)면으로 성장된 AlN 단결정 성장에 관한 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.32-34
    • /
    • 2015
  • AlN Single Crystal were grown by PVT (Physical vapor transport) method on bulk seed. It was performed by high-frequency induction-heating coil. AlN source powder was loaded at bottom side of the carbon crucible and the crystal seed was loaded at the upper side of the crucible. The temperature conditions of the growth was varied $2000{\sim}2100^{\circ}C$ and the surrounding pressure was $1{\times}10^{-1}{\sim}200$ Torr. And the hot-zone of the heating position was controlled elaborately according to growth. The 17 mm-diameter, 7 mm-thickness AlN single crystal is obtained for about 600 hours growing. It was recognized that the growth direction of as grown crystal was R[011] by the Laue X-Ray camera measurement.