• Title/Summary/Keyword: 온도 강하

Search Result 353, Processing Time 0.018 seconds

Spatiotemporal and Longitudinal Variability of Hydro-meteorology, Basic Water Quality and Dominant Algal Assemblages in the Eight Weir Pools of Regulated River(Nakdong) (낙동강 8개 보에서 기상수문·기초수질 및 우점조류의 시공간 종적 변동성)

  • Shin, Jae-Ki;Park, Yongeun
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.268-286
    • /
    • 2018
  • The eutrophication and algal blooms by harmful cyanobacteria (CyanoHAs) and freshwater redtide (FRT) that severely experiencing in typical regulated weir system of the Nakdong River are one of the most rapidly expanding water quality problems in Korea and worldwide. To compare with the factors of rainfall, hydrology, and dominant algae, this study explored spatiotemporal variability of the major water environmental factors by weekly intervals in eight weir pools of the Nakdong River from January 2013 to July 2017. There was a distinct difference in rainfall distribution between upstream and downstream regions. Outflow discharge using small-scale hydropower generation, overflow and fish-ways accounted for 37.4%, 60.1% and 2.5%, respectively. Excluding the flood season, the outflow was mainly due to the hydropower release through year-round. These have been associated with the drawdown of water level, water exchange rate, and the significant impact on change of dominant algae. The mean concentration (maximum value) of chlorophyll-a was $17.6mg\;m^{-3}$ ($98.2mg\;m^{-3}$) in the SAJ~GAJ and $29.6mg\;m^{-3}$ ($193.6mg\;m^{-3}$) in the DAS~HAA weir pools reaches, respectively. It has increased significantly in the downstream part where the influence of treated wastewater effluents (TWEs) is high. Indeed, very high values (>50 or $>100mg\;m^{-3}$) of chlorophyll-a concentration were observed at low flow rates and water levels. Algal assemblages that caused the blooms of CyanoHAs and FRT were the cyanobacteria Microcystis and the diatom Stephanodiscus populations, respectively. In conclusion, appropriate hydrological management practices in terms of each weir pool may need to be developed.

Analysis of Hydrodynamics in a Directly-Irradiated Fluidized Bed Solar Receiver Using CPFD Simulation (CPFD를 이용한 태양열 유동층 흡열기의 수력학적 특성 해석)

  • Kim, Suyoung;Won, Geunhye;Lee, Min Ji;Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.535-543
    • /
    • 2022
  • A CPFD (Computational particle fluid dynamics) model of solar fluidized bed receiver of silicon carbide (SiC: average dp=123 ㎛) particles was established, and the model was verified by comparing the simulation and experimental results to analyze the effect of particle behavior on the performance of the receiver. The relationship between the heat-absorbing performance and the particles behavior in the receiver was analyzed by simulating their behavior near bed surface, which is difficult to access experimentally. The CPFD simulation results showed good agreement with the experimental values on the solids holdup and its standard deviation under experimental condition in bed and freeboard regions. The local solid holdups near the bed surface, where particles primarily absorb solar heat energy and transfer it to the inside of the bed, showed a non-uniform distribution with a relatively low value at the center related with the bubble behavior in the bed. The local solid holdup increased the axial and radial non-uniformity in the freeboard region with the gas velocity, which explains well that the increase in the RSD (Relative standard deviation) of pressure drop across the freeboard region is responsible for the loss of solar energy reflected by the entrained particles in the particle receiver. The simulation results of local gas and particle velocities with gas velocity confirmed that the local particle behavior in the fluidized bed are closely related to the bubble behavior characterized by the properties of the Geldart B particles. The temperature difference of the fluidizing gas passing through the receiver per irradiance (∆T/IDNI) was highly correlated with the RSD of the pressure drop across the bed surface and the freeboard regions. The CPFD simulation results can be used to improve the performance of the particle receiver through local particle behavior analysis.

Study on the Anti-bacterium, Antioxidant and Anti-inflammatory Effect of Calystegia pubescens Lindl. Extracts (메꽃(Calystegia pubescens Lindl.) 추출물의 항균, 항산화 및 항염증 효과에 관한 연구)

  • Ji-A Byeon;Un-Gyo Shin;Ye-Jin Jang;Su-Bin Hwang;Seon-A Lee;Gayeon Kim;Jin-Tae Lee;Ildae Song;Yong-Jin Kwon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.745-755
    • /
    • 2024
  • Calystegia pubescens Lindl. (C. pubesens) is a native Korean herb that has been traditionally used for its diuretic, fatigue, and blood sugar-lowering effects. In previous studies, C. pubesens has shown antioxidant and whitening effects, but research on its antibacterial and anti-inflammatory properties is limited, and its potential as functional materials is lacking. In this study, we investigated the antibacterial, antioxidant, and anti-inflammatory effects of leaf (CPL) and stem (CPS) extracts of C. pubesens extracted with 70% ethanol. When the anti-bacterial effect was confirmed, CPL showed superior anti-bacterial effect than CPS for C. acne, S. aureus, E. coli and P. aeruginosa. Additionally, CPL exhibited significantly higher antioxidant activity compared to CPS, as demonstrated by DPPH and ABTS+ radical scavenging assays. Therefore, CPL showed superior anti-bacterial and antioxidant effects compared to CPS. Based on these results, further investigation was conducted to confirm the anti-inflammatory effect of CPL using RAW264.7 macrophages. Nitric oxide (NO) produced by lipopolysaccharide (LPS) stimulation was significantly reduced by CPL treatment in a dose-dependent manner. Additionally, the protein and mRNA expression of iNOS was reduced by CPL in LPS-indueced RAW264.7 cells, which was consistent with NO production. In conclusion, this study confirmed that CPL has superior anti-bacterial and antioxidant effects compared to CPS, and demonstrated anti-inflammatory effect of CPL via inhibiting iNOS expression and NO production induced by LPS. Based on the result, we suggest the potential of CPL as a valuable functional materials.