• Title/Summary/Keyword: 온도분포특성

Search Result 1,454, Processing Time 0.029 seconds

Study of the Characteristics of Hydrogen-Gas Filling Process of Ultra-Light Composite Tanks for Fuel-Cell Vehicles (연료전지자동차용 초경량 복합재료 탱크의 수소 충전 특성 연구)

  • Yoo, Gye-Hyoung;Kim, Jong-Lyul;Lee, Taek-Su;Lee, Joong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.813-819
    • /
    • 2011
  • In this research, we investigated the hydrogen-gas filling characteristics of ultra-light composite tanks that have a plastic or aluminum liner inside the composite shell. The study was performed for different gas and tank temperatures. The temperature changes at various positions in the Type-4 tank during hydrogen-gas filling were monitored in order to understand the effects of the filling conditions. The results were compared with those obtained for a Type-3 tank. As the filling speed was increased, a quicker temperature rise was observed, and the temperature distribution over the entire region showed significant discrepancies.

실리콘 다이오드를 적용한 다채널 중성 입자 분석기 개발

  • Cheon, Se-Min;Jwa, Sang-Beom;Gang, In-Je;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.211-212
    • /
    • 2011
  • 플라즈마를 제어하기 위해서는 플라즈마의 온도, 밀도, 에너지 분포등과 같은 플라즈마의 특성을 정확히 측정할 수 있어야한다. 핵융합발전에서는 플라즈마를 발생하기 위하여 플라즈마의 온도, 밀도 등 각종 변수들을 시공간적으로 계측, 분석할 수 있는 진달설비를 사용하고 있으며, 정확한 플라즈마 제어와 측정을 위한 새로운 진단기술을 개발하고 있다. 그리고 중요한 변수중에 하나인 플라즈마 이온온도를 측정하기 위해 중성입자 검출법이 잘 알려져 있다. 이 실험은 수소 중성입자가 토카막 내부의 플라즈마 이온과 충돌하면서 생성된 고속 중성입자의 에너지를 분석하는 실험이다. 본 연구의 실험방법은 수소 중성입자를 이온빔 장치에서 이온화 시킨 후 자체 제작한 가속기를 통하여 가속시켜 에너지 특성을 분석을 하는 것이다. 본 연구의 실험장치로 에너지 교정용 100 keV 이온빔 소스를 제작 하였고 이온빔 장치 내부에 수소기체를 주입하고 기체방전을 일으켜 플라즈마를 발생시켰다. 이온빔 외부에는 팬을 설치하고 전도성이 강한 물 대신 전도성이 약한 오일을 사용하여 냉각 하였다. 이온빔 장치와 결합될 이온 가속장치는 지름 300 mm, 두께 2 mm의 원형 구리판을 여러층으로 쌓아 전극으로 제작하였고 전극과 전극 사이에서 코로나 방전과 스파크를 방지하기 위해 전극 둘레에 코로나링을 설치 하였다. 또한 전극 사이마다 1G${\Omega}$의 저항을 설치한 후 고전압을 생성하여 이온 가속 효율을 증대시켰다. 진공시스템으로는 Alcatel사의 CFF100 터보분자 펌프와 우성진공사의 MVP24 진공로타리펌프를 결합하여 사용하였으며, 진공도측정은 Alcatel사의 ACS1000 장치를 사용하였다. 고진공후 고속 중성입자의 이온화와 에너지 측정을 위한 전하교환기를 설치하였다. 전하교환기로는 진공시스템을 별도로 설치하고 비용이 비교적 많이 드는 기체형 전하교환기 대신 소형화가 가능하고 유지보수가 좋은 고체형 전하교환기 제작하여 실험 하였다. 전하교환기에서 이온화된 고속 중성입자가 전기장이나 자장에 영향을 받았을때 에너지분포를 디텍터를 통해 측정하였다. 즉, 이온화된 중성입자의 에너지가 실리콘 다이오드를 통해 전압 펄스 신호로 변환되고 이차 증폭기를 통해 전압 펄스 신호들이 증폭한다. 에너지 측정을 위한 디텍터는 소형화가 가능하고 비용이 비교적 적게 드는 실리콘 다이오드를 설치하였다. 본 연구결과 중성입자 에너지 분석 장치가 실제 핵융합 장치의 플라즈마 이온온도와 특성 측정에 적용할 수 있으며, 앞으로 개발될 여러 형태의 응용 플라즈마 발생장치의 플라즈마 진단에 이용될 것으로 기대한다.

  • PDF

Production properties of pyrolytic matter of PP and PS plastics in n low temperature pyrolysis condition (저온 열분해조건에서 PP 및 PS계 플라스틱의 열분해물 생성특성 연구)

  • Kim, Sang-Hoon;Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.867-873
    • /
    • 2007
  • Thermal degradation characteristics of polypropylene and polystyrene have been studied in the thermogravimetric(TG) reactor and batch-type microreactor. The dynamic thermogravimetric curve of TG provided a valuable information about pyrolysis temperature. It was found that PS was thermally degraded at lower temperature of $30{\sim}50^{\circ}C$ than PP. It was found that the yield and molecular weight of liquid product in the microreactor were decreased with the increase of reaction temperature and time in the case of PP. The production of styrene monomer was significantly increased by the promotion of depolymerization with the increase of temperature and time. The chain-end scission rate parameters were determined to be 50.0 kcal/mole of PP, 45.2 kcal/mole of PS by the Arrhenius plot.

  • PDF

Effect of Temperatures during Ripening Period on Morpological Characteristics of Rachis-Grain in Rice (등숙기간중 온도와 벼 이삭 지경간 곡립의 형태 형성차이)

  • Lee, Jeong-Il;Shin, Jin-Chul;Kim, Je-Kyu;Kim, E-Hun;Cho, Dong-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.5
    • /
    • pp.662-669
    • /
    • 1995
  • To clarify the effect of temperature during ripening on grain quality, rice plant which was grown under normal natural conditions untill heading stage was subjected various temperature regimes during grain filling stage. Three varieties, Odaebyeo, Hwaseongbyeo and Dongjinbyeo were used. Grains on primary and secondary-rachis branches were harvested seperately and measured specific gravity, grain size and weight. The optimum daily temperature for grain filling of rice during ripening period was about 22$^{\circ}C$ and grain filling under alternating temperature(26/18$^{\circ}C$, day /night) was better than constant temperature (22 /22$^{\circ}C$) based on 1, 000-grain weight and yield. Grain size based on volume per grain was smallest under the constant temperature of 22 /22$^{\circ}C$. The size of secondary-rachis branches was smaller than primary-rachis branch. The difference in size between primary and secondary-rachis branches was biggest in Hwaseongbyeo, followed by Odaebyeo and Dongjinbyeo. The temperature regimes treated did not influence the grain size difference between branches so much. The 1000-grain weight was lighter under high temperature than low temperature in Odaebyeo, but reversed tendency was observed in Dongjinbyeo of secondary rachis-branches.

  • PDF

Hydrogen Response Characteristics of Tantalum Oxide Layer Formed by Rapid Thermal Oxidation at High Temperatures (고온에서 급속열산화법으로 형성된 탄탈륨산화막의 수소응답특성)

  • Seong-Jeen Kim
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • Since silicon having a band gap energy of about 1.12 eV are limited to a maximum operating temperature of less than 250 ℃, the sample with MIS structure based on the SiC substrate of wide-band gap energy was manufactured and the hydrogen response characteristics at high temperatures were investigated. The dielectric layer applied here is a tantalum oxide layer that is highly permeable to hydrogen gas and shows stability at high temperatures. It was formed by RTO at a temperature of 900 ℃ with tantalum. The thickness, depth profiles, and leakage current of the tantalum oxide layer were analyzed through TEM, SIMS, and leakage current characteristics. For the hydrogen gas response characteristics, the capacitance change characteristics were investigated in the temperature range from room temperature to 400 ℃ for hydrogen gas concentrations from 0 to 2,000 ppm. As a result, it was confirmed that the sample exhibited excellent sensitivity and a response time of about 60 seconds.

Analysis of Temperature Distributions in Spray Coating Room (스프레이 코팅 룸의 온도분포 해석)

  • Kim, Nam Woong;Kim, Sung-Yong;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7667-7671
    • /
    • 2015
  • Recently, Zinc coating is often used with environment friendly features and high performance. Generally The coating temperature is one of main factors for determining coating thickness and coating ability, so the optimal coating temperature is strongly required. In this paper, the thermo-flow simulation considering the air flow inside the coating rooms for analyzing the temperature distributions of Zinc spray coating room was performed. Two spray coating rooms, preheating room and drying room were all modeled by SolidWorks program and the temperature distributions were analyzed by Flow simulation program. The analysis results were verified with the measured data by thermal image camera. The characteristics of temperature distributions of the first spray room and the second spray room were understood and the results showed that the temperatures of two spray coating room were low compared with the target temperature $25^{\circ}C$. To the exclusion of heater addition, the simulation with all the same conditions exclusive the exhaust fan was performed, which showed that the temperatures of the first and the second spray rooms increased by $6.2^{\circ}C$ and $5.8^{\circ}C$. This analysis can be applicable for designing a new spray coating room for improving performance.

Study on Spatial Characteristics of Physicochemical Components of Spring Water in Mts. Geumjeong and Baekyang Area Using Kriging (크리깅 기법을 이용한 금정산-백양산 일대 용천수의 물리화학적 성분의 공간적 분포 특성 연구)

  • 함세영;정재열;류상민;강래수
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.439-457
    • /
    • 2002
  • Sping waters at 60 sites and groundwaters at 6 wells in Mts. Geumjeong and Baekyang area were investigated for measuring nine physicochemical components (temperature, pH, Eh, EC, TDS, DO, salinity, alkalinity and discharge rate). The pH of spring waters ranges from 5.06 to 8.38, alkalinity from 7.93 to 102.21 mg/ㅣ, electrical conductance from 9.5 to $270{\;}\mu\textrm{s}/cm$, Eh from 64.2 to 685.9 mV, DO from 4.57 to 12.13 mg/l, and the discharge rate from 4.26 to 182.2 ml/s. General statistics was carried out to analyze statistical characteristics of those components. To compare the components with one another, regression analyses were carried out. And the components of spring waters were compared to those of groundwaters. Kriging was used to estimate the spatial variation of DO, pH, Eh, EC, alkalinity and discharge rate in the study area. The kriged isopleth maps were made using normalized kriged values to find anomalies of the physicochemical components and to compare anomalies of different components.

Synthesis and characterization of $BaTiO_3$ fine particles by hydrothermal process (수열합성법에 의한 미립의 $BaTiO_3$ 분말합성 및 특성)

  • 배동식;주기태;한경섭;최상흘
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.563-566
    • /
    • 1998
  • $BaTiO_3$ fine particles were prepared by hydrothermal process from titanium tetra-isoproproxide ($Ti(OiPr)_4$) and barium hexa-hydroxide ($Ba(OH)_2{cdot}8H_2O$) as raw materials. The fine particles were obtained at the temperature range of 160 to $185^{\circ}C$. The properties of $BaTiO_3$ particles were studied as a function of various parameters such as reaction temperature, reaction time and Ba/Ti ratio, etc. The average particle size of $BaTiO_3$ increased with increasing reaction temperature and time. After hydrothermal treatment at $170^{\circ}C$ for 8 h, the average particle size of $BaTiO_3$ was about 30 nm and the particle size distribution was narrow.

  • PDF

Distribution Characteristics of Pyrolysis Products of Polyethylene (폴리에틸렌 열분해 생성물의 분포 특성)

  • Lee, Dong-Hwan;Choi, Hong-Jun;Kim, Dae-Su;Lee, Bong-Hee
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • To investigate the characteristics of pyrolysis for LDPE, LLDPE and HDPE, the low temperature pyrolysis was carried out in the range of 425 to $500^{\circ}C$ for 35 to 65 min. The liquid products formed during pyrolysis were classified into gasoline, kerosene, light oil and wax according to the distillation temperatures based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. TGA experiments for three PE samples showed that the onset temperature of pyrolysis increased with increasing heating rate, and the onset temperature of pyrolysis at a fixed heating rate was in the order of LDPE$475^{\circ}C$. Yields of gasoline and kerosene were highest at $450^{\circ}C$, 65 min and decreased slightly at above $475^{\circ}C$.

Fabrication and Charactreistics of MOCVD Cu Thin Films Using (hfac)Cu(VTMOS) ((hfac)Cu(VTMOS)를 이용한 Thermal CVD Cu 박막의 제조 및 그 특성)

  • 이현종;최시영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.59-65
    • /
    • 1999
  • In this paper, we had studied the possibility of application as Cu thin films from (hfac)Cu(VTMOS) which is very stable. Cu thin films had been studied as a function of deposition temperature. Substrates used in the experiment were PVD TiN on Si wafer. Deposition conditions were as follow : deposition temperature $50^{\circ}C$. Cu thin films were analyzed by AES, four point probe, XRD and SEM. All of deposited films were very pure and some favoring of <111> planes perpendicular to the substrate surface were observed. Cu thin films had two distinct growth rates at various deposition temperature. One is the surface reaction limited region below $200^{\circ}C$, and the other is the mass transport limited region above $200^{\circ}C$. The resistivity of deposited Cu thin films under the optimum deposition condition is $2.5mu\Omega.cm$ Thus, properties of deposited Cu thin films using (hfac)Cu(VTMOS) didn't show difference with Cu thin films from other precursors.

  • PDF