• Title/Summary/Keyword: 옥타브

Search Result 96, Processing Time 0.026 seconds

The System of Converting Muscular Sense into both Color and Sound based on the Synesthetic Perception (공감각인지 기반 근감각신호에서 색·음으로의 변환 시스템)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.462-469
    • /
    • 2014
  • As a basic study on both engineering applications and representation methods of synesthesia, this paper aims at building basic system which converts a muscular sense into both visual and auditory elements. As for the building method, data of the muscular sense can be acquired through roll and pitch signals which are calculated from both three-axis acceleration sensor and the two-axis gyro sensor. The roll and pitch signals are then converted into both visual and auditory information as outputs. The roll signals are converted into both intensity elements of the HSI color model and octaves as one of auditory elements. In addition, the pitch signals are converted into both hue elements of the HSI color model and scales as another one of auditory elements. Each of the extracted elements of the HSI color model is converted into each of the three elements of the RGB color model respectively, so that the real-time output color signals can be obtained. Octaves and scales are also converted and synthesized into MIDI signals, so that the real-time sound signals can be obtained as anther one of output signals. In experiments, the results revealed that normal color and sound output signals were successfully obtained from roll and pitch values that represent muscular senses or physical movements, depending on the conversion relationship based on the similarity between color and sound.

A study of the measurement systems implementation for the interior impulse noise (실내 충격소음 측정시스템 구현에 관한 연구)

  • Song, Kee-Hyeok;Chung, Sung-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.93-100
    • /
    • 2014
  • The objective of this study is to propose the measurement system implementation method for the evaluation and measurement of the indoor-impulsive over 170 dB noise source. For the purpose of measuring impulse noise, design and implementation constructed followed subsystems of the testing center, microphone, ear simulator, head and torso simulator and so on. Measurement systems for the accuracy and reliability of impulse noise are implemented when measuring 3 ways of measurements method by the simultaneous measurement system design. For the accuracy and reliability of three mutually indoor-impulse noise measurements were compared, three kinds of measuring methods in accordance with the peak sound pressure level and octave band. Comparing the results of data, the indoor-impulse noise by analyzing a frequency characteristic was validated in difference for the statistical significance. Result are determined by the influence of the reflected wave. Therefore, the flexible size of the interior test site while interior impulse noise measurement system was constructed. Throughout this system can be affected by parameters that are the impulse noise source and the corresponding frequency-characteristic analysis to determine the spectrum of the reflected wave. And, in the near future, indoor impulse noise measurement systems for acquisition and analysis are utilized in useful data.

An investigation of subband decomposition and feature-dimension reduction for musical genre classification (음악 장르 분류를 위한 부밴드 분해와 특징 차수 축소에 관한 연구)

  • Seo, Jin Soo;Kim, Junghyun;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.144-150
    • /
    • 2017
  • Musical genre is indispensible in constructing music information retrieval system, such as music search and classification. In general, the spectral characteristics of a music signal are obtained based on a subband decomposition to represent the relative distribution of the harmonic and the non-harmonic components. In this paper, we investigate the subband decomposition parameters in extracting features, which improves musical genre classification accuracy. In addition, the linear projection methods are studied to reduce the resulting feature dimension. Experiments on the widely used music datasets confirmed that the subband decomposition finer than the widely-adopted octave scale is conducive in improving genre-classification accuracy and showed that the feature-dimension reduction is effective reducing a classifier's computational complexity.

Automobile diagnosis by euro-Fuzzy Technique (뉴로-퍼지 기법에 의한 자동차 진단)

  • Shin, Joon;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1833-1840
    • /
    • 1992
  • In the diagnostic process for automobile, Neuro-Fuzzy technique was compared with the conventional diagnostic method for the verification of performance, and proto-type system was developed. For the utilities of the system, 1/3 octave filter(band-pass filter) and A/D converter were used for data acquisition and then data were analyzed using octave band processing and pattern recognition using hamming network algorithm. In order to raise the reliability of the diagnostic results by considering many operating variables and condition of automobile to be diagnosed, fuzzy inference technique was applied in combining several information. The validation of this diagnostic system was examined through computer simulation and experiment, and it showed an acceptable performance for diagnostic process.

Development of High Intensity Progressive Wave Tube (고에너지 음향환경시험 튜브 개발)

  • K.Kim, Young-Key;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun;Im, Jong-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.962-965
    • /
    • 2005
  • A high intensity progressive wave tube is installed at Korea Aerospace Research Institute (KARI) for acoustic environmental tests. The test facility has 700 mm x 800 mm cross-sectional area, and provides acoustic environment of 165 dB over the frequency range of $25Hz{\sim}10,000Hz$. The facility consists of a 6 m long acoustic wave tube, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of the facility and power generation systems are controlled to meet the requirement of the test. The shape and length of the tube has been designed by using the size of test objects and the wave propagation characteristics of the tube. The capacity of acoustic power generation systems is determined by the energy conversion of acoustic wave and the efficiency of acoustic modulators. Moreover, the paper introduces test run results of the tube. Overall of 163dB has been generated by using the test facility.

  • PDF

Field Test and Evaluation of Wind Turbine Noise according to IEC Standards (IEC 규격에 따른 풍력 터빈 소음의 현장 실증)

  • Cheong, Cheol-Ung;Jung, Sung-Su;Cheung, Wan-Sup;Shin, Soo-Hyun;Chun, Se-Jong;Lee, Sang-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.579-582
    • /
    • 2005
  • The sound measurement techniques in IEC 61400-11 are applied to field test and evaluation of noise emission from 1.5 MW wind turbine generator (WTG) at Yongdang-Lee and 650 kW WTG at Hangwon-Lee in Jeju Island. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. 1.5 MW WTG at Yongdang is found to emit lower sound power than 660 kW one at Hangwon, which seems to be due to lower rotating speed of the rotor of WTG at Yongdang. Equivalent continuous sound pressure level s (ECSPL) of 650 kW WTG at Hangwon vary more widely with speed than those of 1.5 MW WTG at Yongdang. The reason for this is believed to be the fixed blade-rotating speed of WTG at Yongdang. One-third octave band analysis of the measured data show that the band components around 400-500 Hz are dominant for 1.5 MW WTG at Yongdang and those around 1K Hz are dominant for 660 kW WTG at Hangwon.

  • PDF

The Wideband Characteristics of Wide Slot Planar Antennas (폭이 넓은 평면 슬롯 안테나의 광대역 특성)

  • 이행렬;김일권;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.260-267
    • /
    • 2003
  • The wideband characteristics of planar antennas with a wide radiating slot have been examined in this paper. A various resonance modes are generated in the wide slot and the wideband characteristics are enhanced by impedance match at each resonance frequencies. In this process, the geometry effects on the impedance match were extracted and it was found that a round corner rectangular slot antenna has more stable impedance match over a wide frequency range than a normal rectangular slot antenna. The round corner rectangular slot antenna is fabricated to verify the wideband characteristics and its measured bandwidth is almost 2 octaves(2.08 ㎓~8.25 ㎓) with VSWR$\leq$2.

A study on the identification of noise sources of the 4-cylinder gasoline engine by using acoustic intensity method (음향인텐시티법을 이용한 4기통 가솔린 엔진의 소음원 검출에 관한 연구)

  • Oh, J. E.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 1989
  • Acoustic intensity method is applied to a 4-cylinder gasoline engine in order to identify the noise sources and the response characteristics. Acoustic intensity is analyzed by 1/3 octave band filter for each center frequency. Radiational characteristics of acoustic intensity at overall and the maximum intensity level are represented by using the contour and three-dimensional plot. It is verified that this method is effective to the assessment of engine noise. It can be found that the maximum intensity is radiated from the front side of the engine under idling condition and the right side of it under 2, 000 rpm running with no loading condition at overall level, and also that the maximum intensity is radiated from the oil pan and the intake and exhaust manifold at the center frequency of 100 Hz.

  • PDF

Real Time 1/3 Octave Band Control System for High Intensity Acoustic Chamber (음향 챔버 내부의 1/3 옥타브 스펙트럼 실시간 제어 시스템)

  • Kim, Young-Key;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun;Lee, Sang-Seol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.881-885
    • /
    • 2002
  • This paper presents the performance and the algorithm of a 1/3-octave band spectrum control system. The system is developed to provide various spectrums in a high intensity acoustic chamber. The required spectrum, which usually comes from launch vehicle company, starts from 25Hz band and ends 10kHz band. Automatic spectrum control system is preferred since the system requires short settling time to guarantee the safety of test objects and to reduce the amount of operating gas. The developed system adapted a PCI data-acquisition/signal-generation board installed in a personal computer to implement whole control logic. The control software used three cascade digital Butterworth filters using software. The filers are designed following ANSI S1.11 standard to implement 1/3 octave band filter bank. The graphical user interface of the system guides the user to follow standard operation procedure. The averaged control spectrum showed less than 0.05 dB in every running 1/3-octave band.

  • PDF

Electronic Music Glove Using Sound Card (사운드 카드를 이용한 전자 음악 장갑)

  • 정의필;이창원
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.128-133
    • /
    • 2002
  • We developed a electronic music glove (BMG) system that plays musical scores in real time processing. The EMG system interfaces with the signal coming from the controller to the sound card in the computer, The computer, according to the status of the fingers and foot switches, generates the sound signals and sends them to the speaker systems through the application C++ program and MIDI message. The EMG systems control the velocity and duration of sound and several musical performance expressions such as chorus, reverberation, rhythm, and volume. Finally, we implemented the digital drum set using: the EMG system as example.