• Title/Summary/Keyword: 오픈베이스

Search Result 27, Processing Time 0.026 seconds

The effect of the information on the buyer's trust in the e-marketplace (오픈 마켓의 제공정보가 고객 신뢰도에 미치는 영향)

  • Kim, Myoung-Soo
    • Proceedings of the Korea Database Society Conference
    • /
    • 2008.05a
    • /
    • pp.301-306
    • /
    • 2008
  • The buyer in the e-marketplace makes a transaction without facial interaction. Therefore how to provide buyers with trust is the critical factor of the success in the e-marketplace. To solve this problem, the market-maker provides customers with various kinds of information. In this study, we analyzed the effect of the information on the buyer's trust in the e-marketplace.

  • PDF

Applying In-Page Logging to SQLite DBMS (SQLite DBMS에 IPL 기법 응용)

  • Na, Gap-Joo;Kim, Sang-Woo;Kim, Jae-Myung;Lee, Sang-Won
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.400-410
    • /
    • 2008
  • Flash memory has been widely used in mobile devices, such as mobile phone and digital camera. Recently flash SSD(Solid State Disk), having same interface of the disk drive, is replacing the hard disk of some laptop computers. However, flash memory still cannot be considered as the storage of database systems. The FTL(Flash Translation Layer) of commercial flash SSD, making flash memory operate exactly same as a hard disk, shows poor performance on the workload of databases with many random overwrites. Recently In-Page Logging(IPL) approach was proposed to solve this problem. In this paper, we implement IPL approach on SQLite, a popular open source embedded DBMS, and evaluate its performance. It improves the performance by up to 30 factors for update queries.

Multi-source based Question Answering System (다중소스 기반 질의 응답 시스템)

  • Park, Seonyeong;Kwon, Soonchoul;Choi, Junhwi;Yu, Hwanjo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.209-212
    • /
    • 2015
  • 본 논문에서는 지식베이스와 다중 소스 레이블 문서를 동시에 활용한 다중소스 기반 오픈 도메인 질의 응답 시스템에 대해 소개한다. 제안하는 질의 응답 시스템은 자연어처리를 기반으로 한 질의 분석 모듈, SPARQL (Simple protocol and RDF Query Language) query 생성 및 검색 부분, 다중 소스 레이블 문서 검색 부분으로 이루어져 있다. 정확도가 높은 지식베이스 기반의 질의 응답 시스템으로 정답을 우선 탐색한다. 지식베이스 기반 질의 응답 시스템으로 정답을 찾는 데 실패하거나, SPARQL query 생성에 실패하면, 다중 소스가 레이블된 문서 검색을 통해 정답을 찾는다. 제안하는 질의 응답 시스템은 지식베이스만 사용한 질의 응답 시스템보다 높은 성능을 보인다.

  • PDF

A study on the Extraction of Similar Information using Knowledge Base Embedding for Battlefield Awareness

  • Kim, Sang-Min;Jin, So-Yeon;Lee, Woo-Sin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.33-40
    • /
    • 2021
  • Due to advanced complex strategies, the complexity of information that a commander must analyze is increasing. An intelligent service that can analyze battlefield is needed for the commander's timely judgment. This service consists of extracting knowledge from battlefield information, building a knowledge base, and analyzing the battlefield information from the knowledge base. This paper extract information similar to an input query by embedding the knowledge base built in the 2nd step. The transformation model is needed to generate the embedded knowledge base and uses the random-walk algorithm. The transformed information is embedding using Word2Vec, and Similar information is extracted through cosine similarity. In this paper, 980 sentences are generated from the open knowledge base and embedded as a 100-dimensional vector and it was confirmed that similar entities were extracted through cosine similarity.

Taxonomy Induction from Wikidata using Directed Acyclic Graph's Centrality (방향 비순환 그래프의 중심성을 이용한 위키데이터 기반 분류체계 구축)

  • Cheon, Hee-Seon;Kim, Hyun-Ho;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.582-587
    • /
    • 2021
  • 한국어 통합 지식베이스를 생성하기 위해 필수적인 분류체계(taxonomy)를 구축하는 방식을 제안한다. 위키데이터를 기반으로 분류 후보군을 추출하고, 상하위 관계를 통해 방향 비순환 그래프(Directed Acyclic Graph)를 구성한 뒤, 국부적 도달 중심성(local reaching centrality) 등의 정보를 활용하여 정제함으로써 246 개의 분류와 314 개의 상하위 관계를 갖는 분류체계를 생성한다. 워드넷(WordNet), 디비피디아(DBpedia) 등 기존 링크드 오픈 데이터의 분류체계 대비 깊이 있는 계층 구조를 나타내며, 다중 상위 분류를 지닐 수 있는 비트리(non-tree) 구조를 지닌다. 또한, 위키데이터 속성에 기반하여 위키데이터 정보가 있는 인스턴스(instance)에 자동으로 분류를 부여할 수 있으며, 해당 방식으로 실험한 결과 99.83%의 분류 할당 커버리지(coverage) 및 99.81%의 분류 예측 정확도(accuracy)를 나타냈다.

  • PDF

Development of application utilizing GPS-based pet location information (GPS 기반의 애완동물 위치 정보 활용 애플리케이션 개발)

  • Young-Hwan Kim;Hyuk-Jun Kwon;Jong-Beom Si;Bo-Seok Hwang;Ga-Hyun Kim;Young-Seok Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.287-288
    • /
    • 2024
  • 본 논문에서는 플루터, 파이어베이스와 구글맵을 기반으로 라즈베리파이에 GPS 모듈을 장착하여 위치 정보를 실시간으로 받아 대형견, 소형견 위치를 파악하여 경고 알림을 송신하고 자신의 애완동물과 거리가 멀어지게 된다면 경고 알림을 송신하여 대형견에 의한 피해 사례를 감소시키고 유실 및 실종 동물 사례를 감소시킨다. 또한 게시판을 통해서 산책 친구와 산책 아르바이트를 구할 수 있는 기능을 추가하고 산책 시 유의 사항, 오픈웨더를 통해 날씨 등 산책에 필요한 정보들을 추가하여 산책 시 위험한 요소를 해결할 수 있고 필요한 요소를 통합한 애플리케이션을 개발한다.

  • PDF

Two-Stage Contrastive Learning for Representation Learning of Korean Review Opinion (두 단계 대조 학습 기반 한국어 리뷰 의견 표현벡터 학습)

  • Jisu Seo;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.262-267
    • /
    • 2022
  • 이커머스 리뷰와 같은 특정 도메인의 경우, 텍스트 표현벡터 학습을 위한 양질의 오픈 학습 데이터를 구하기 어렵다. 또한 사람이 수동으로 검수하며 학습데이터를 만드는 경우, 많은 시간과 비용을 소모하게 된다. 따라서 본 논문에서는 수동으로 검수된 데이터없이 양질의 텍스트 표현벡터를 만들 수 있도록 두 단계의 대조 학습 시스템을 제안한다. 이 두 단계 대조 학습 시스템은 레이블링 된 학습데이터가 필요하지 않은 자기지도 학습 단계와 리뷰의 특성을 고려한 자동 레이블링 기반의 지도 학습 단계로 구성된다. 또한 노이즈에 강한 오류함수와 한국어에 유효한 데이터 증강 기법을 적용한다. 그 결과 스피어먼 상관 계수 기반의 성능 평가를 통해, 베이스 모델과 비교하여 성능을 14.03 향상하였다.

  • PDF

Question Answering over Knowledge Graphs Using Bilinear Graph Neural Network (쌍 선형 그래프 신경망을 이용한 지식 그래프 기반 질문 응답)

  • Lee, Sangui;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.563-566
    • /
    • 2020
  • 지식 그래프 기반의 질문 응답 문제는 자연어 질문에 대한 이해뿐만 아니라, 기반이 되는 지식 그래프상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 요구한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프상의 추론 과정에서 추른 경로를 명확히 하기 위한 노드의 양방향 특정 전파와 이웃 노드들 간의 맥락 정보까지 각 노드의 특정값에 반영할 수 있는, 표현력이 풍부한 쌍 선형 그래프 신경망 (BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스 Freebase와 자연어 질문 응답 데이터 집합 WebQuestionsSP를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.

Exploring Answer Sentences using Hierarchical Retrieval Models (계층적 검색 모델을 이용한 정답 문장 탐색)

  • Seungho Choi;Hyun-Kyu Jeon;Jiyoon Kim;Bongsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.361-365
    • /
    • 2023
  • 오픈 도메인 질의응답 (ODQA, Open-Domain Question Answering)은 주어진 질문에 대한 답을 찾는 작업으로 일반적으로 질문과 관련 있는 지식을 검색 모델(Retrieval)을 통해 찾는 단계와, 찾은 지식에서 문서의 정답을 독해 모델(Reader)을 이용하여 찾는 단계로 구성되어 있다. 본 논문은 기존의 DPR(Dense Passage Retrieval)을 이용한 복수의 검색 모델(Retrieval)만을 계층적으로 사용하여 독해 모델(Reader)을 사용하지 않고 정답 문장을 찾는 방법과 정답 문장을 찾는 데 특화된 검색 모델 학습을 위한 유효한 성능 향상을 보이는 Hard Negative Sampling 기법을 제안한다. 해당 제안기법을 적용한 결과, 동일 조건에서 학습된 검색 - 독해(Retrieval-Reader) 구조의 베이스라인 모델보다 EM에서 12%, F1에서 10%의 성능 향상을 보였다.

  • PDF

Impact Assessment of Climate Change by Using Cloud Computing (클라우드 컴퓨팅을 이용한 기후변화 영향평가)

  • Kim, Kwang-S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • Climate change could have a pronounced impact on natural and agricultural ecosystems. To assess the impact of climate change, projected climate data have been used as inputs to models. Because such studies are conducted occasionally, it would be useful to employ Cloud computing, which provides multiple instances of operating systems in a virtual environment to do processing on demand without building or maintaining physical computing resources. Furthermore, it would be advantageous to use open source geospatial applications in order to avoid the limitations of proprietary software when Cloud computing is used. As a pilot study, Amazon Web Service ? Elastic Compute Cloud (EC2) was used to calculate the number of days with rain in a given month. Daily sets of climate projection data, which were about 70 gigabytes in total, were processed using virtual machines with a customized database transaction application. The application was linked against open source libraries for the climate data and database access. In this approach, it took about 32 hours to process 17 billion rows of record in order to calculate the rain day on a global scale over the next 100 years using ten clients and one server instances. Here I demonstrate that Cloud computing could provide the high level of performance for impact assessment studies of climate change that require considerable amount of data.