The use of error compensation techniques has been recognized as an effective way in the improvement of the accuracy of a machine tool. The laser measurement method for identifying position errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the position errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving position errors using hemispherical helix ball bar test.
The objective of this study is to estimate and to compensate for the volumetric error of a machine tool. In this paper, the volumetric error is defined and error synthesis model is presented. Then, the volumetric error of workpiece is compared through the virtual machining and a new tool-path is generated to compensate for the error in the post-processor of CAM system using the error synthesis model. By this method, the error is compensated without modification or replacement of a machine tool being in use.
Machining accuracy is affected by quasi-static errors of machining center. Since machine errors have a direct influence upon both the surface finish and geometric shape of the finished workpiece, it is very important to measure the machine errors and to compensate these errors. The laser measurement method for identifying geometric errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the geometric errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving geometric errors using hemispherical helix ball bar test. As a result of experiment, geometric errors of the vertical machining center are compensated by 88%.
Geometric and thermal errors are key contributors to the errors of a computer numerically controlled turning center. A planar error synthesis model is obtained by synthesizing 11 geometric and thermal error components of a turning center with homogeneous coordinate transformation method. This paper shows the sensitivity analysis on the temperature change, the confidence evaluation on the uncertainty Of measurement systems, and the error contribution analysis from the planar error synthesis model. Planar error in the z direction was very sensitive to the temperature change. and planar errors in the x and z directions were not affected by the uncertainty of measurement systems. The error contribution analysis ,which is applicable to designing a new turning center, was helpful to find the large error components which affect planar errors of the turning center.
최근 여러 분야에서 그래프 신경망(graph neural network, GNN)이 활발히 연구되고 있다. 하지만 지금까지 대부분의 GNN 연구는 단일 GNN 모델의 성능을 향상하는 데 집중되었다. 본 논문에서는 앙상블(ensemble) 기법의 대표적 기법인 그래디언트 부스팅(gradient boosting)을 이용하여 GNN의 앙상블 모델을 만드는 방법을 제안한다. 제안 방법은 앞서 만들어진 GNN의 오차를 경사 하강법(gradient descent)을 이용하여 감소시키는 방향으로 다음 GNN을 생성한다. 이 과정을 반복하여 GNN의 최종 앙상블 모델을 얻는다. 실험에서 GNN의 대표적인 모델인 그래프 합성곱 신경망(graph convolutional network, GCN)에 제안 방법을 적용하여 앙상블 모델을 생성한 결과, 단일 GCN 모델에 비해 노드 분류 정확도가 11.3%p까지 증가하였음을 확인하였다.
2차 반응표면분석을 위한 부분합성계획은 실험 비용이 많이 들거나, 실험 자체가 어려워서 시간의 소비자 많은 경우, 실험오차의 독립추정이 가능할 때 효과적이다. 반응표면분석에서는 회전성과 기울기 회전성을 만족하는 것이 중요하다. 따라서 본 논문에서는 회전성과 기울기 회전성의 관점에서 부분합성계획을 살펴보고 또한 인자의 수와 중심점의 수가 변함에 따라서 어떤 $\alpha$(중심에서 축점까지의 거리)의 값이 최적의 실험계획이 되도록 하는지를 연구하였다.
전방향(omnidirectional) 카메라 시스템은 보다 적은 수의 영상으로부터 주변 장면(scene)에 대한 많은 정보를 취득할 수 있는 장점이 있기 때문에 전방향 영상을 이용한 자동교정(self-calibration)과 3차원 재구성 등의 연구가 활발히 진행되고 있다. 본 논문에서는 기존에 제안된 교정 방법들을 이용하여 추정된 사영모델(projection model)의 정확성을 검증하기 위한 새로운 방법이 제안된다. 실 세계에서 다양하게 존재하는 직선 성분들은 전방향 영상에 컨투어(contour)의 형태로 사영되며, 사영모델과 컨투어의 양 끝점 좌표 값을 이용하여 그 궤적을 추정할 수 있다. 추정된 컨투어의 궤적과 영상에 존재하는 컨투어와의 거리 오차(distance error)로부터 전방향 카메라의 사영모델의 정확성을 검증할 수 있다. 제안된 방법의 성능을 평가하기 위해서 구 맵핑(spherical mapping)된 합성(synthetic) 영상과 어안렌즈(fisheye lens)로 취득한 실제 영상에 대해 제안된 알고리즘을 적용하여 사영모델의 정확성을 판단하였다.
본 논문에서는 문-음성 합성기에서 사용되는 대용량 데이터 베이스의 구성을 목적으로 하는 음성 신호의 자동 분할기법을 기술하였다. 주된 내용은 은닉 마코프 모델에 기반을 둔 음소 분할과 여기서 얻어진 결과를 초기 음소 경계로 사용하여 이를 자동으로 수정하는 방법으로 구성되어 있다. 다층 퍼셉트론이 음성 경계의 검출기로 사용되었으며, 음소 분할의 성능을 증가시키기 위해, 음소의 천이 패턴에 따라 다층 퍼셉트론을 개별적으로 학습시키는 방법이 제안되었다. 음소 천이 패턴은 수작업에 의해 생성된 레이블 정보를 기준 음소 경계로 사용하여, 기준 음소 경계와 추정된 음소 경계간의 전체 오차를 최소화하는 관점에서 분할되도록 하였다. 단일 화자를 대상으로 하는 실험에서 제안된 기법을 통해 생성된 음소 경계는 기준 경계와 비교하여 95%의 음소가 20 msec 이내의 경계 오차를 갖는 것으로 나타났으며, 평균 자승 제곱근 오차면에서 수정 작업을 통해 25% 향상된 결과를 나타내었다.
본 연구에서는 폐식용유를 이용한 바이오디젤 제조공정에 반응표면분석법 중 중심합성계획모델을 이용하여 최적화 과정을 수행하였다. 공정변수로는 폐식용유의 산가, 반응시간, 반응온도, 메탄올/유지 몰비, 촉매량 등을 선택하였고, 반응치로는 FAME 함량(96.5% 이상) 및 동점도(1.9~5.5 cSt)를 설정하였다. 기초실험을 통해 계량인자범위를 반응시간 (45~60 min), 반응온도($50{\sim}60^{\circ}C$), 메탄올/유지 몰비(8~12)로 정하고, 중심합성계획모델을 이용한 최적화 결과 바이오디젤의 제조공정의 최적조건은 반응시간 55.2 min, 반응온도 $57.5^{\circ}C$, 메탄올/유지 몰비 10으로 나타났다. 이 조건에서 바이오디젤의 예측 FAME 함량은 97.5%, 동점도는 2.40 cSt이었으며, 실제 실험을 통해 확인한 결과 FAME 함량(97.7%), 동점도(2.41 cSt)로 측정되어 오차율은 각각 0.23, 0.29%로 나타났다. 따라서 폐식용유 원료 바이오디젤 제조공정 최적화 과정에 반응표면분석법 중 중심합성계획모델을 적용할 경우 매우 낮은 오차율을 얻을 수 있었다.
본 연구에서는 시계열 순서의 의미가 희석될 수 있는 기존의 U-net 기반 딥러닝 강우예측 모델의 성능을 개선하고자 하였다. 이를 위해서 데이터의 연속성을 고려한 ConvLSTM2D U-Net 신경망 구조를 갖는 모델을 적용하고, RainNet 모델 및 외삽 기반의 이류모델을 이용하여 예측정확도 개선 정도를 평가하였다. 또한 신경망 기반 모델 학습과정에서의 불확실성을 개선하기 위해 단일 모델뿐만 아니라 10개의 앙상블 모델로 학습을 수행하였다. 학습된 신경망 강우예측모델은 현재를 기준으로 과거 30분 전까지의 연속된 4개의 자료를 이용하여 10분 선행 예측자료를 생성하는데 최적화되었다. 최적화된 딥러닝 강우예측모델을 이용하여 강우예측을 수행한 결과, ConvLSTM2D U-Net을 사용하였을 때 예측 오차의 크기가 가장 작고, 강우 이동 위치를 상대적으로 정확히 구현하였다. 특히, 앙상블 ConvLSTM2D U-Net이 타 예측모델에 비해 높은 CSI와 낮은 MAE를 보이며, 상대적으로 정확하게 강우를 예측하였으며, 좁은 오차범위로 안정적인 예측성능을 보여주었다. 다만, 특정 지점만을 대상으로 한 예측성능은 전체 강우 영역에 대한 예측성능에 비해 낮게 나타나, 상세한 영역의 강우예측에 대한 딥러닝 강우예측모델의 한계도 확인하였다. 본 연구를 통해 시간의 변화를 고려하기 위한 ConvLSTM2D U-Net 신경망 구조가 예측정확도를 높일 수 있었으나, 여전히 강한 강우영역이나 상세한 강우예측에는 공간 평활로 인한 합성곱 신경망 모델의 한계가 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.