사영된 컨투어를 이용한 전방향 카메라 모델의 검증 방법

Verification Method of Omnidirectional Camera Model by Projected Contours 황용호, Yongho Hwang, 이재만, Jaeman Lee, 홍현기, Hyunki Hong 중앙대학교 첨단영상대학원 영상공학과

요약 전방향(omnidirectional) 카메라 시스템은 보다 적은 수의 영상으로부터 주변 장면(scene)에 대한 많은 정보를 취득할 수 있는 장점이 있기 때문에 전방향 영상을 이용한 자동교정(self-calibration)과 3 차원 재구성 등의 연구가 활발히 진행되고 있다. 본 논문에서는 기존에 제안된 교정 방법들을 이용하여 추정된 사영모델(projection model)의 정확성을 검증하기 위한 새로운 방법이 제안된다. 실 세계에서 다양하게 존재하는 직선 성분들은 전방향 영상에 컨투어(contour)의 형태로 사영되며, 사영모델과 컨투어의 양 끝점 좌표 값을 이용하여 그 궤적을 추정할 수 있다. 추정된 컨투어의 궤적과 영상에 존재하는 컨투어와의 거리 오차(distance error)로부터 전방향 카메라의 사영모델의 정확성을 검증할 수 있다. 제안된 방법의 성능을 평가하기 위해서 구 맵핑(spherical mapping)된 합성(synthetic) 영상과 어안렌즈(fisheye lens)로 취득한 실제 영상에 대해 제안된 알고리즘을 적용하여 사영모델의 정확성을 판단하였다.

핵심어: Omnidirectional camera, Calibration, Projection model, Contour, Fisheye lens

1. 서론

다중 시점(multi-view) 영상들을 이용한 카메라 위치의 추정과 3차원 재구성(reconstruction) 기술은 컴퓨터 비젼 분야에서 오랫동안 연구되고 있는 분야 중 하나이다[1~5]. 카메라 위치 등의 3차원 정보를 추정하기 위해서 영상 간 의 대응(correspond)되는 점, 직선, 컨투어 등의 특징들을 검출하고 정합(matchging)하는 과정이 중요하다. 하지만 카메라의 이동이 크거나 주변 조명에 의해 많이 영향을 받는 경우, 두 영상 간의 정합이 매우 어렵다.

전방향(omnidirectional) 카메라 시스템은 보다 적은 수 의 영상으로부터 주변 장면(scene) 에 대한 많은 정보를 취득할 수 있기 때문에 근래 컴퓨터 비젼 분야에서 활발 히 연구가 진행되고 있다.

본 논문에서는 기존에 제안된 교정(calibration) 방법들 을 이용하여 추정된 전방향 카메라의 사영모델(projection model)의 정확성 여부를 분석하기 위한 방법이 제안된다. 실 세계에 다양하게 존재하는 직선 성분들은 전방향 영상 에 컨투어(contour)의 형태로 사영되며, 사영모델과 컨투어 의 양 끝점 정보를 이용하여 그 궤적을 추정할 수 있다. 추정된 컨투어의 궤적과 영상에 존재하는 컨투어와의 거 리 오차(distance error)로부터 사영모델의 정확성을 검증할 수 있다.

제안된 분석 방법의 정확도 등을 평가하기 위해서 구

맵핑(spherical mapping)된 합성(synthetic) 영상과 어안렌즈 (fisheye lens)로 취득한 실제 영상에 각각 적용하였으며, 다 양한 실험 결과로부터 사영모델의 정확성 여부를 판단할 수 있었다.

2장에서는 전방향 카메라 모델과 관련된 기존 연구를 설명하고, 3장에서 추정된 전방향 카메라 모델의 검증 방 법을 제안한 다음, 실험 결과와 분석 내용을 4장에서 기 술하고,5장에서 결론을 맺는다.

2. 관련연구

초기에 진행되어온 연구는 대부분 전방향 카메라 모델 을 핀홀(pinhole) 카메라 모델로 변환하여 추정하는 접근 방법을 제안했다[5-7]. 컨투어로 왜곡(distortion)된 직선을 원래의 직선 형태로 변환(transform)시켜 왜곡 모델의 파라 미터 값을 추정할 수 있지만 전체 영상을 교정할 수 없다 는 단점이 있다. Shah와 Bakstein은 전방향 영상을 교정할 수 있는 방법을 일반화시켰지만 실험과정에서 레이져 빔 과 실린더 형태의 교정 패턴을 이용해야하는 번거로움이 있다[8,9].

근래에는 전방향 카메라 모델에 관한 연구가 자동교정 (self-calibration)과 연계되어 제안되고 있다[10-12]. Micusik 등은 에피폴라 기하(epipolar geometry)의 선형화와 전방향 카메라 모델을 동시에 추정하는 방법을 제안했으며[10], Thirthala 등은 다중 시점 기하(multi-view geometry)를 이용 하는 방법을 개발했고[11], Claus 등은 카메라의 이동 (motion)과 렌즈의 기하를 동시에 선형화하여 추정할 수 있는 왜곡모델을 제안했다[12]. 또 최근 Barreto등은 광각 렌즈에서 발생하는 왜곡을 보정하는 방사 기본 행렬(radial fundamental matrix)을 소개했지만[13], 대부분의 연구는 전 방향 카메라의 모델 추정보다는 자동교정 방법을 주로 다 루었다.

최근에 Kannala 등은 교정 패턴을 이용하여 전방향 카 메라뿐만 아니라 일반 카메라도 정확하게 모델링할 수 있 는 일반적인 방법이 제안되었지만 사전에 패턴을 제작하 고 영상을 취득해야 하는 단점이 있다[14].

기존 방법에서는 카메라 모델을 추정하고 픽셀의 위치 와 컨투어 등을 역(back) 사영해서 픽셀 오차 및 직선화 여부 등을 분석했다. 본 논문에서는 기존에 제안된 방법 들로 카메라 모델을 구현하고 그 정확성을 검증하기 위하 여 전방향 영상에서 사영된 컨투어(projected contour)를 이 용하는 방법이 제안된다.

3. 제안된 방법

본 장에서는 기존에 제안된 사영모델과 교정 방법에 대해 간략히 설명하고 구현된 카메라 모델의 정확성을 검 증하기 위하여 컨투어를 이용하는 방법이 제안된다

그림 1. 제안된 방법의 블록 다이어그램

3.1 사영모델(Projected model)

일반적인 원근(perspective) 사영모델은 어안렌즈로 취득 한 전방향 영상을 표현할 수 없기 때문에 방사상으로 대 칭성을 갖는 사영모델이 필요하다. 핀홀 카메라 모델은 다음과 같은 원근 사영모델로 표현 가능하다.

$$r = f \tan \theta, \qquad (1)$$

위 식에서 θ는 카메라 중심축(principal axis)과 입사광 사이의 각도이고, r은 영상의 중심점(principal point)으로부 터의 거리를 나타내며 f는 초점거리(focal length)이다. 반지 름 r_{max}인 전방향 영상에서 거리 r만큼 떨어진 픽셀의 입 사 벡터 **P**와 높이값 z로 구성되는 일반적인 전방향 카메 라 모델을 그림 2에 보였다.

그림 2. 일반적인 전방향 카메라 모델

원근 사영모델은 *θ*가 90° 일 때 *r*이 무한대의 값을 가 지므로 전방향 카메라 모델로 사용할 수 없기 때문에 다 음 식 (2)~(5)와 같은 사영모델을 기본 모델로 사용할 수 있다.

$r = 2f \tan(\theta/2)$	(스테레오그래픽 사영),	(2)
$r = f\theta$	(등거리 사영),	(3)
$r = 2f\sin(\theta/2)$	(등입체각 사영),	(4)
$r = f \sin \theta$	(직교 사영).	(5)

위 사영모델 중 한 모델을 초기값으로 설정한 후, 9개 의 파라미터로 정확한 전방향 카메라 모델로 수렴하는 방 법을 이용하여 카메라 모델을 추정할 수 있다. 방사상으 로 대칭성을 갖는 일반적인 모델을 파라미터 k로 표현하 여 다음 식 (6)과 같이 나타낼 수 있다.

$$r(\theta) = k_1 \theta + k_2 \theta^3 + k_3 \theta^5 + k_4 \theta^7 + k_5 \theta^9 + \dots,$$
(6)

또한 CCD에 맺힌 영상이 디지털화되는 과정에서 카메 라 중심점과 종횡비(aspect ratio)에 따른 아핀(affine) 변환 이 발생하기 때문에 이러한 내부(intrinsic) 파라미터도 함 께 추정된다. 수식 (6)에서 5개의 파라미터와 아핀변환시 필요한 4개의 파라미터를 포함한 총 9개의 파라미터로 카 메라 모델을 표현할 수 있다.

3.2 사영된 컨투어

실 세계에 다양하게 존재하는 직선 성분들은 전방향 영상에 컨투어의 형태로 사영되기 때문에 추정된 카메라 모델과 컨투어의 끝점 좌표값을 이용하여 그 궤적을 추정할 수 있다.

그림 3. 컨투어로 사영된 3차원 공간 상의 직선 성분

그림 3은 양 끝점을 가지는 3차원 직선 성분(line segment)이 2차원 영상(image plane)에 컨투어로 사영되는 관계를 나타낸다. 직선 성분과 카메라 중심으로부터 해석 평면(interpretation plane) Π 를 정의하며, 이 평면의 법선벡터 $\mathbf{m} = (m_x, m_y, m_z)$ 는 양 끝점의 방향벡터 $(\mathbf{p}_1, \mathbf{p}_2)$ 의 외적(cross product) $(\mathbf{p}_1 \times \mathbf{p}_2)$ 을 통하여 얻을 수 있다. 이차원 영상에 붉은 색으로 표시한 컨투어 c는 평면 Π 와 전방향 카메라 모델을 나타내는 곡면 S의 교선이 직교 사영된 것이다. 평면 Π 는 평면 상의 임의의 점 \mathbf{p} (x, y, z)와 카메라 중심 \mathbf{p}_0 로부터 다음과 같이 정의된다.

$$\mathbf{m} \cdot (\mathbf{p} - \mathbf{p}_0) = \mathbf{0},\tag{7}$$

방정식 (7)에서 내적(dot product)을 함으로써, ∏ 의 평면방정식은 z 에 관해서 다음과 같이 간단히 나타낼 수 있다.

$$z = ax + by$$
, $a = -m_x/m_z$, $b = -m_y/m_z$. (8)

평면 Π 와 추정된 카메라 모델이 서로 교차하는 선분을 구하기 위해 먼저, θ 가 최대 시야각(field of view)일 때 카메라 중심으로부터의 거리 *r*_{max}를 반지름으로 하는 구와의 교선을 구하고, 이 교선을 추정된 카메라 모델에 투영하여 사영된 컨투어의 궤적을 계산한다.

평면 ∏ 와 구 모델의 교선을 y에 관하여 내림차순으로 전개하면 다음과 같다.

$$ax + by = \sqrt{r_{\max}^2 - x^2 - y^2},$$

$$(b^2 + 1)y^2 + 2abxy + (a^2 + 1)x^2 - r_{\max}^2 = 0.$$

위 식으로부터, x좌표 값의 변화에 따른 y좌표 값과 z 좌표값($z = \sqrt{x^2 + y^2}/\tan\theta$)을 구할 수 있으며 그림 4에서 보이는 바와 같이 삼각형의 닮은꼴을 이용한 비례식을 사용하여 구 모델과의 교선을 추정된 카메라 모델에 투영하여 사영된 컨투어의 궤적을 구할 수 있다.

그림 4. 구 모델상의 교선과 추정된 모델상의 교선과의 관계

추정된 카메라 모델로부터 θ 에 대한 r_{curve}을 구하고, 이를 식 (10)에 대입하여 영상 위에 사영된 컨투어를 결정한다.

$$y_{curve} = \pm \sqrt{r_{curve}^2 - x_{curve}^2}, \quad x_{curve} = x \times (r_{curve} / r_{sphere}).$$
(10)

3.3 컨투어 거리 오차

추정된 카메라 모델의 정확성을 정량적으로 나타내는 방법으로서 사영된 컨투어의 궤적과 실제 영상에 존재하는 컨투어와의 거리 오차가 제안된다. 실제 영상에서의 컨투어의 좌표값은 캐니 에지 검출(Canny edge dection)을 이용하였다[14]. 그림 5에 전방향 영상에 존재하는 실제 컨투어 $c_i(s)$ 와 사영된 컨투어 $c_i(t)$ 를 동시에 보였으며 두 컨투어의 거리 오차(D)는 식 (11)로 계산된다.

$$D = \sum_{i=1}^{n} D_{i}, \quad D_{i} = \int_{0}^{1} \|c_{i}(s) - c_{i}(t)\| ds \quad , \tag{11}$$

위 식에서, *i*는 컨투어의 개수로서 총 *n*개 있으며 *t*(*s*)는 단조 감소하지 않는 함수(monotonic non-decreasing function) 로서 t(0)=0과 t(1)=1 값을 갖는다. 계산된 오차 *D*는 추정 된 전방향 카메라 모델의 정확도를 검증할 수 있는 척도 (measure)로 사용될 수 있다.

4. 실험 및 검토

제안된 방법의 정확성을 검증하기 위해 임의의 시점에 서 구 맵핑된 가상의 체크박스 영상을 만들어 외곽의 4개 컨투어들의 궤적을 계산한 후, 원 영상에 중첩하여 그림 6에 보였다.

 (a) 원 영상
 (b) 추정된 컨투어의 궤적 영상

 그림 6. 구 맵핑된 가상 영상에서 외곽 컨투어 궤적 추정 결과

그림 6에서 보는 바와 같이 네 개의 꼭지점 좌표로부 터 제안된 방법에 의해 컨투어의 궤적을 추정하면 정확히 정합됨을 알 수 있다.

어안렌즈를 이용해 취득한 실제 영상에도 제안된 방법 을 적용하기 위해, 먼저 니콘 쿨픽스(Coolpix) 995 디지털 카메라에 시야각이 183°인 어안컨버터 FC-E8을 장착하여 사전에 준비된 교정 패턴을 1600×1200 크기로 촬영하였 다. 그리고 여섯 개의 파라미터로 표현이 가능한 전방향 카메라 모델을 추정했으며[9], 교정 패턴은 검은 바탕에 반경 60mm의 흰 원들로 구성된 2×3m²크기의 평판을 이 용했다. 그림 7에 교정 패턴을 이용한 모델 추정 과정을 보였고, 추정된 모델을 삼차원 매쉬 형태로 그림 8에 나 타내었다.

그림 7. 교정 패턴을 이용한 카메라 모델 추정 과정; 임의의 위치 에서 취득한 영상(시야각:183°, 초점거리 1.7*mm*)

그림 8. 추정된 전방향 카메라 모델

사영된 컨투어 양 끝점의 좌표값과 추정된 카메라 모 델을 이용하여 계산된 컨투어의 궤적을 그림 9에 보였다. 입력값으로 사용된 각 사영된 컨투어의 끝점은 붉은 원으 로 표시했고, 제안된 방법에 의해 추정된 17개의 컨투어 궤적은 파란 컨투어로 나타내었다. 추정된 컨투어의 궤적 이 실제 영상의 컨투어와 정확히 일치함을 확인할 수 있 다.

그림 9. 추정된 카메라 모델과 끝점의 좌표 값을 이용한 컨투어 궤 적계산 결과

제안된 방법으로 전방향 영상에 사영된 컨투어의 궤적

을 추정한 결과를 그림 10에 나타내었다.

그림 10. 다양한 영상에서의 컨투어 궤적 추정

실제 컨투어와의 일치 정도를 정량적으로 표현하기 위해 각각 다른 4개의 영상에 사영모델별로 평균 컨투 어 거리 오차를 계산해 표 1에 나타내었다.

표	1.	사영모델별	평균	컨투어	거리	오차	(단위: pixe
---	----	-------	----	-----	----	----	-----------

사영모델	А	В	С
실험 1	4.2	0.1	0.05
실험 2	8.5	0.2	0.09
실험 3	6.7	0.15	0.07
실험 4	9.1	0.25	0.1

실험에 이용한 사영모델 중에서 A는 등거리 (equidistance) 모델이며, B는 에피폴라 기하를 이용하여 전 방향 모델을 추정한 방법[10], 그리고 C는 3장 설명한 모 델[14]로서 6개의 파라미터를 사용한 방법이다. 표 1에서 보이는 바와 같이 C방법으로 가장 정확하게 전방향 카메 라 모델을 추정했음을 알 수 있다.

또한 추정된 카메라 모델을 이용하여 다중 시점에서 취득한 전방향 영상으로부터 카메라의 외부(extrinsic) 파라 미터를 추정한다. 얻어진 정보로부터 상대적인 카메라의 이동과 회전(rotation)을 알 수 있고 삼차원 공간의 재구성 에 중요한 정보로 사용될 수 있다.

시점을 달리한 스테레오 전방향 영상을 취득하여 27개 의 대응점(corresponding point)을 상용 프로그램 매치무버 프로 3.0(MatchMover Pro 3.0)으로 자동 검출한 영상을 그 림 11에 보였다.

추정된 카메라 모델로부터 이차원 좌표 값에 대한 삼 차원 높이 값을 알 수 있기 때문에 각 대응점에 대해서 삼차원 벡터로 표현이 가능하다. 이를 에피폴라 기하를 이용하여 에센셜 행렬(essential matrix)을 계산하고 SVD(Singular Value Decomposition)로 분해하여 카메라의 상 대적인 이동과 회전 정보를 추정할 수 있다[16].

그림 11. 스테레오 전방향 영상

그림 11의 오른쪽 영상은 왼쪽 영상을 취득한 카메라 보다 상대적으로 y축 기준 15° 회전했으며 x축으로 이동 한 카메라로 취득된 영상이다. 추정된 회전 행렬과 이동 벡터를 표 2에 나타냈으며, 얻어진 결과 데이터로부터 회 전 및 이동 결과값이 비교적 정확히 측정됨을 확인하였다.

표 2. 추정된 외부 파라미터

	회전 행렬	이동 벡터
기준치	$\begin{bmatrix} 0.9659 & 0 & 0.2588 \\ 0 & 1 & 0 \\ -0.2588 & 0 & 0.9659 \end{bmatrix}$	(1,0,0)
추정치	$\begin{bmatrix} 0.9717 & -0.0066 & 0.2361 \\ 0.0026 & 0.9998 & 0.0174 \\ -0.2361 & -0.0163 & 0.9716 \end{bmatrix}$	(0.97, 0.08,-0.23)

5. 결론

본 논문에서는 기존의 교정 방법들을 이용하여 추정된 사영모델의 정확성을 검증하기 위한 방법이 제안되었다. 사영모델과 컨투어의 양 끝점 정보를 이용하여 그 궤적을 추정하고 실제 영상에 존재하는 컨투어와의 거리 오차로 부터 사영모델의 정확성을 검증할 수 있었다. 또한 다중 시점 전방향 영상으로부터 3차원 재구성의 기본이 되는 카메라의 외부 파라미터를 비교적 정확하게 추정할 수 있 었다.

전방향 카메라 모델의 추정을 위해 사전에 교정 패턴 을 사용하지 않는 방법이 추후 연구될 예정이며, 사영된 컨투어의 다중 시점 영상 간 정합 등의 방법으로 보다 정 확한 외부 파라미터를 추정하여 최종적으로 3차원 공간을 효과적으로 재구성하는 연구가 계속 진행될 예정이다.

감사의 글

본 연구는 서울시 산학연협력사업으로 구축된 서울 미래 형콘텐츠컨버전스 클러스터 지원으로 수행되었습니다.

참고문헌

- C. Baillard and A. Zisserman, "Automatic Reconstruction of Piecewise Planar Models from Multiple Views", Proc. CVPR, pp. 559~565, 1999.
- [2] R. Hartley, "A Linear Method for Reconstruction from Lines and Points", Proc. ICCV, pp. 882~887, 1995.
- [3] S. Gibson, J. Cook, T. Howard, R. Hubbold, and D. Oram, "Accurate Camera Calibration for Off-Line, Video-Based Augmented Reality", ACM ISMAR, pp. 37~46, 2002.
- [4] S. Gibson, R. Hubbold, J. Cook, and T. Howard, "Interactive Reconstruction of Virtual Environments from Video Sequences", Computer Graphics, Vol. 27, pp 293~301, 2003.
- [5] C. Brauer-Burchardt and K. Voss, "A New Algorithm to Correct Fish-eye- and Strong Wide-Angle-Lens-Distortion from Single Images", Proc. ICIP, pp. 225~228, 2001.
- [6] F. Devernay and O. Faugeras, "Straight Lines have to be Straight", Machine Vision and Applications, Vol. 13, No. 1, pp. 14~24, 2001.
- [7] A. Basu and S. Licardie, "Alternative Models for Fish-Eye Lenses", Pattern Recognition Letters, Vol. 16, pp. 433~441, 1995.
- [8] S. Shah and J. Aggarwal, "Intrinsic Parameter Calibration Procedure for a (high distortion) Fish-Eye Lens Camera with Distortion Model and Accuracy Estimation", Pattern Recognition, Vol. 29, No. 11, pp. 1775~1788, 1996.
- [9] H. Bakstein and T. Pajdla, "Panoramic Mosaicing with a 180° Field of View Lens", Proc. IEEE Workshop on Omnidirectional Vision, pp. 60~67, 2002.
- [10] B. Micusik, "Two-View Geometry of Omnidirectional Cameras", PhD. Thesis, Czech Technical University, 2004.
- [11] S. Thirthala and M. Pollefeys, "Multi-View Geometry of 1D Radial Cameras and its Application to Omnidirectional Camera Calibration", Proc. ICCV, pp. 1539~1546, 2005.

- [12] D. Claus and A. W. Fitzgibon, "A Rational Function Lens Distortion Model for General Cameras", Proc. CVPR, pp. 213~219, 2005.
- [13] J. P. Barreto and K. Daniilidis, "Fundamental Matrix for Cameras with Radial Distortion", Proc. ICCV, pp. 625~632, 2005.
- [14] J. Kannala and S. S. Brandt, "A Generic Camera Model and Calibration Method for Conventional, Wide-Angle, and Fish-Eye Lenses", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 28, No. 8, pp. 1335~1340, 2006.
- [14] J. Canny, "A Computational Approach to Edge Detection", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 679~698, 1986.
- [15] R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision", Cambridge Univ., 2000.